Free Trial

Featured This month

  • Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Diabetic Retinopathy Screening
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Table of Contents

    What are the diabetic retinopathy screening methods?

    Fundus images in DR screening

    Can OCT detect diabetic retinopathy?

    What does diabetic retinopathy look like on OCT?

    What are the screening intervals for diabetic retinopathy?

    What are OCT biomarkers for diabetic macular edema?

    Monitoring diabetic retinopathy: OCT red flags

    Diabetic retinopathy treatment

    Conclusion

    Diabetic retinopathy (DR) remains the leading cause of irreversible vision loss among working-age adults worldwide. According to the International Diabetes Federation (IDF), one in three patients with diabetes shows signs of DR, and 10% develop diabetic macular edema (DME). Early diagnosis, systematic screening, and individualized monitoring are essential to prevent vision loss.

    What are the diabetic retinopathy screening methods?

    Modern methods of DR screening include:

    • Telemedicine platforms with automated fundus image transmission
    • FDA-approved AI-based systems
    • Mobile fundus cameras with Wi-Fi synchronization for field examinations
    • Smartphone-based platforms with specialized lenses

    In practice, these methods are often combined. For example, patients may undergo fundus photography, after which the images are transmitted to telemedicine centers and analysed by AI algorithms. More complex cases are then referred to ophthalmologists.

    DR screening is also frequently incorporated into annual diabetes checkups conducted by primary care physicians trained in basic fundus photography. This approach, already successfully implemented in several EU countries, has reduced the incidence of severe DR.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Innovations in DR screening have broadened access for rural residents, older adults, and individuals with limited mobility. Integration into national e-health systems enables automated reminders and electronic medical record linkage, incorporating laboratory data (HbA1c, blood pressure) alongside retinal images.

    Fundus images in DR screening

    Fundus photography is the optimal primary screening method due to its high diagnostic yield, cost-efficiency, simplicity, and ability to integrate with AI and telemedicine solutions. 

    It enables detection of microaneurysms, hemorrhages, exudates, and neovascularization, often before symptoms arise. National screening programs rely heavily on digital fundus imaging, which, when combined with AI, provides an efficient platform for mass DR detection.

    Advances in fundus imaging for diabetic retinopathy have improved efficiency. Modern non-mydriatic cameras deliver high-quality images without pupil dilation, while automated image analysis supports rapid identification of suspicious cases. Cloud storage and telemedicine platforms facilitate remote evaluation, increasing coverage in regions with limited ophthalmology services.

    Next-generation wide-field cameras further enhance detection by capturing peripheral pathology. Some devices also generate automated annotations, reporting lesion type, DR stage, and DME presence, thereby standardizing interpretation and expediting clinical decision-making.

    Can OCT detect diabetic retinopathy?

    Although OCT has not traditionally been considered a primary screening tool for diabetic retinopathy, its role in diagnostics is steadily growing. OCT is increasingly used as a supplementary method to fundus photography, especially for detecting early signs of diabetic macular edema and morphological changes in the central retina that are not yet visible during ophthalmoscopy.

    Due to its high resolution, OCT allows visualization of structural changes such as photoreceptor layer disruption, subclinical intraretinal fluid, thickening of the neurosensory retina, and foveal edema. These changes often precede clinically significant macular edema and can only be detected by OCT.

    OCT is also useful for identifying other causes of vision loss in diabetic patients, for example, ruling out age-related macular degeneration.

    Recent studies confirm that adding OCT to standard screening significantly increases diagnostic accuracy for DME. Therefore, many experts recommend combining fundus photography with OCT in patients with long-standing diabetes, poor glycemic control, or complaints of vision deterioration.

    What does diabetic retinopathy look like on OCT?

    Diabetic retinopathy OCT scans offer a unique opportunity to identify changes not always seen on fundus photography.

    Typical DR OCT findings include:

    • Destruction of outer retinal layers, particularly the ellipsoid zone, indicating photoreceptor damage
    • Intraretinal hyperreflective foci, hard exudates
    • Microaneurysms
    • Changes in retinal thickness and neuroepithelial layer atrophy
    • Diabetic macular edema with intraretinal hyporeflective cystoid spaces and neuroepithelial swelling
    • Subretinal fluid, resulting from increased vascular permeability
    • Disorganization of inner retinal layers (DRIL), an unfavorable prognostic sign associated with reduced visual acuity
    • Development of epiretinal membranes

    Diabetic Retinopathy Screening with AI

    OCT also detects proliferative changes and tractional zones, which may lead to tractional retinal detachment.

    Beyond structural analysis, OCT angiography (OCTA) is increasingly used to visualize microvascular retinal changes without contrast injection. OCTA helps identify neovascularization, capillary network disruption, and the extent of macular ischemia.

    What are the screening intervals for diabetic retinopathy?

    The screening frequency for diabetic retinopathy must be tailored to diabetes type, disease stage, and risk factors:

    Type 1 diabetes

    • First screening: 3–5 years after diagnosis (due to onset in children and young adults)
    • Then annually, if no DR is detected
    • If DR is present, frequency depends on severity

    Type 2 diabetes

    • Screening at diagnosis, as DR may already be present.
    • If no DR, repeat every 1–2 years.

    Patients with confirmed DR

    • No visible DR, mild non-proliferative diabetic retinopathy (NPDR), no DME — every 1–2 years
    • Moderate NPDR — every 6–12 months.
    • Severe NPDR — every 3 months.
    • Proliferative DR (PDR) — monthly, with regular OCT monitoring of the macula.
    • DME — monthly if center-involving, every 3 months if not.

    Pregnant women with type 1 or type 2 diabetes

    • Screening before conception or in the first trimester, with follow-up each trimester and postpartum
    • Screening is not required for gestational diabetes without pre-existing diabetes

    Post-treatment patients (laser or vitrectomy)

    • Typically, every 3–6 months during the first year, individualized based on retinal stability
    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are OCT biomarkers for diabetic macular edema?

    OCT is a key method for detecting DME, thanks to its ability to visualize retinal layers with micron resolution. OCT not only confirms DME presence but also identifies biomarkers with prognostic value for treatment selection, therapy response prediction, and monitoring.

    Main OCT biomarkers in DME:

    • Cystoid hyporeflective intraretinal spaces, usually found in the inner nuclear layer (INL) or outer plexiform layer (OPL). Their number, size, and location correlate with edema severity. Large or confluent spaces may indicate chronicity and a worse prognosis.
    • Subretinal fluid (fluid between the neurosensory retina and retinal pigment epithelium). While often associated with a better visual prognosis, it requires careful monitoring and consideration in anti-VEGF therapy.
    • Central macular thickening. Changes in macular thickness are key indicators of treatment effectiveness.

    DR Screening with Altris AI

    Monitoring diabetic retinopathy: OCT red flags

    Patients with DR require ongoing monitoring to identify early signs of progression. Worrisome OCT signs of disease progression include. Worrisome OCT signs of disease progression include:

    • Progressive central macular thickening despite treatment.
    • Increase in intraretinal or subretinal fluid, appearance or enlargement of cystoid spaces
    • Appearance of new hyperreflective foci, signaling inflammatory activity. Hyperreflective foci may precede hard exudates or RPE changes.
    • Appearance or progression of DRIL. DRIL is an independent predictor of poor prognosis, even when morphological improvement is seen on OCT.
    • Ellipsoid zone disruption, indicating photoreceptor damage.
    • Signs of macular ischemia. Although better evaluated with OCTA, indirect signs on OCT may include thinning of the inner retinal layers.
    • Tractional changes: epiretinal membrane formation, inner retinal stretching, or macular traction.

    AI in optometry

     

    The appearance of these OCT signs should prompt reassessment of therapy, potential regimen adjustment (e.g., switching anti-VEGF agents, introducing steroids, or combination therapy), and referral to retinal surgeons when tractional changes are present.

    Diabetic retinopathy treatment

    Treatment of DR requires a comprehensive approach, taking into account disease stage, individual patient characteristics, OCT findings, comorbidities, and prognostic biomarkers.. Modern strategies include preventive, pharmacological, and surgical methods, as well as personalized medicine tools based on retinal imaging.

    1. Risk stratification and treatment choice
      Therapy is chosen based on:
    • DR stage (non-proliferative, proliferative, with or without DME).
    • DME form (focal, diffuse, with or without subretinal fluid).
    • Presence of DRIL, EZ disruption, ischemic changes on OCTA.
    • Response to prior therapy (anti-VEGF, steroids, laser).
    • Comorbidities (renal insufficiency, hypertension, poor compliance).

    Low-risk patients may undergo observation or focal laser. Those with significant DME — anti-VEGF or steroid injections. Proliferative DR patients often require panretinal laser photocoagulation or vitrectomy.

    1. Pharmacotherapy: anti-VEGF and steroids
      Anti-VEGF agents (aflibercept, ranibizumab, bevacizumab) remain first-line therapy for DME, especially effective in patients with significant edema and no ischemia. New agents with extended effects, including port delivery systems, are emerging.
      Steroids are used in persistent DME, anti-VEGF resistance, or inflammatory phenotypes.
    2. Laser therapy
      Although injections have largely replaced laser for DME, panretinal photocoagulation remains standard for proliferative DR. Subthreshold micropulse laser is increasingly used for focal edema with minimal tissue impact.
    3. Surgery
      Vitrectomy is indicated in cases of tractional macular edema, vitreous hemorrhage, or retinal detachment.
    4. Personalization based on OCT
      Modern treatment protocols integrate OCT biomarkers for tailored strategies and prognosis. AI systems can automatically generate treatment protocols from OCT data, highly valuable where retina specialists are limited.
    5. Patient education and multidisciplinary care
      Treatment success depends heavily on patient adherence. Patients must understand the need for regular injections, monitoring, and systemic control. Collaboration between ophthalmologists, endocrinologists, and family doctors ensures stable glycemic control and slows DR progression.

    Conclusion

    Screening and monitoring of diabetic retinopathy are evolving rapidly with advances in telemedicine, AI, and OCT-based imaging. Early detection through decentralized, technology-driven approaches, combined with individualized monitoring and biomarker-guided treatment, is critical to preserving vision. Personalized care strategies—supported by imaging technologies and multidisciplinary collaboration—offer the most effective means to reduce the global burden of DR-related blindness.

  • Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska, CMO
    1 min.

    Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    Chicago, IL – August 26, 2025 – Altris AI introduces an advanced flagging system to search through the large volumes of OCT scans, including historical data.

    Now, with Altris AI’s new functionality, eye care professionals can instantly identify OCT scans with specific retina pathologies or biomarkers from the list of over 70 conditions. For example, clinicians can locate OCT scans of all patients with a Soft Drusen or Dry AMD, forming cohorts for clinical or research purposes.

    For those who work with Geographic Atrophy biomarkers, it is also possible to exclude the presence of GA biomarkers in 1, 3,6 mm ETDRS zones to spot early development of this pathology.

    The flagging system is precise and enables fast, targeted searches across historical records and large datasets – including OCT scans from different devices. This advancement supports a more efficient workflow and enhances access to critical data for both diagnostics and research.

    “Flags are a clinical shortcut. Instead of manually searching through thousands of scans, you can now filter precisely for what you need—whether that’s subretinal fluid, GA progression, or early glaucoma indicators. It’s about making the data work for you.” Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI.

    With flags for smart filtering, eye care specialists can:

    • Track risk-related biomarkers and set reminders for patient follow-ups
    • Quickly identify eligible candidates for clinical studies by searching through large volumes of data
    • Confidently introduce new treatments by finding the right patient profiles
    • Filter rare or complex cases to study unique combinations of pathologies and biomarkers and their progression

    “Flags make it possible to build patient cohorts in minutes,” Maria Znamenska, Chief Medical Officer at Altris AI, comments on this new feature. “Whether it’s for the research or for introducing the new therapy, you now have a reliable tool to search for the right patients efficiently.

    For example, the FDA has recently approved the first treatment for Macular Telangiectasia Type 2, so eye care specialists can now search through their whole patient database and find those who have this particular pathology in minutes to offer them a new treatment.”

    The release of flags reinforces Altris AI’s position as a leading AI decision support platform for OCT analysis for both clinical care and research purposes. By enabling customizable filtering across over 70 pathologies and biomarkers, flags support better disease tracking, faster research, and more personalized treatment planning.

    About Altris AI
    Altris AI is a vendor-neutral, web-based AI Decision Support for OCT Analysis platform. It supports early diagnosis, treatment planning, and research across more than 70 biomarkers and retinal pathologies. Altris AI is used by leading clinics and research centers worldwide.

popular Posted

  • Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Diabetic Retinopathy Screening
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Table of Contents

    What are the diabetic retinopathy screening methods?

    Fundus images in DR screening

    Can OCT detect diabetic retinopathy?

    What does diabetic retinopathy look like on OCT?

    What are the screening intervals for diabetic retinopathy?

    What are OCT biomarkers for diabetic macular edema?

    Monitoring diabetic retinopathy: OCT red flags

    Diabetic retinopathy treatment

    Conclusion

    Diabetic retinopathy (DR) remains the leading cause of irreversible vision loss among working-age adults worldwide. According to the International Diabetes Federation (IDF), one in three patients with diabetes shows signs of DR, and 10% develop diabetic macular edema (DME). Early diagnosis, systematic screening, and individualized monitoring are essential to prevent vision loss.

    What are the diabetic retinopathy screening methods?

    Modern methods of DR screening include:

    • Telemedicine platforms with automated fundus image transmission
    • FDA-approved AI-based systems
    • Mobile fundus cameras with Wi-Fi synchronization for field examinations
    • Smartphone-based platforms with specialized lenses

    In practice, these methods are often combined. For example, patients may undergo fundus photography, after which the images are transmitted to telemedicine centers and analysed by AI algorithms. More complex cases are then referred to ophthalmologists.

    DR screening is also frequently incorporated into annual diabetes checkups conducted by primary care physicians trained in basic fundus photography. This approach, already successfully implemented in several EU countries, has reduced the incidence of severe DR.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Innovations in DR screening have broadened access for rural residents, older adults, and individuals with limited mobility. Integration into national e-health systems enables automated reminders and electronic medical record linkage, incorporating laboratory data (HbA1c, blood pressure) alongside retinal images.

    Fundus images in DR screening

    Fundus photography is the optimal primary screening method due to its high diagnostic yield, cost-efficiency, simplicity, and ability to integrate with AI and telemedicine solutions. 

    It enables detection of microaneurysms, hemorrhages, exudates, and neovascularization, often before symptoms arise. National screening programs rely heavily on digital fundus imaging, which, when combined with AI, provides an efficient platform for mass DR detection.

    Advances in fundus imaging for diabetic retinopathy have improved efficiency. Modern non-mydriatic cameras deliver high-quality images without pupil dilation, while automated image analysis supports rapid identification of suspicious cases. Cloud storage and telemedicine platforms facilitate remote evaluation, increasing coverage in regions with limited ophthalmology services.

    Next-generation wide-field cameras further enhance detection by capturing peripheral pathology. Some devices also generate automated annotations, reporting lesion type, DR stage, and DME presence, thereby standardizing interpretation and expediting clinical decision-making.

    Can OCT detect diabetic retinopathy?

    Although OCT has not traditionally been considered a primary screening tool for diabetic retinopathy, its role in diagnostics is steadily growing. OCT is increasingly used as a supplementary method to fundus photography, especially for detecting early signs of diabetic macular edema and morphological changes in the central retina that are not yet visible during ophthalmoscopy.

    Due to its high resolution, OCT allows visualization of structural changes such as photoreceptor layer disruption, subclinical intraretinal fluid, thickening of the neurosensory retina, and foveal edema. These changes often precede clinically significant macular edema and can only be detected by OCT.

    OCT is also useful for identifying other causes of vision loss in diabetic patients, for example, ruling out age-related macular degeneration.

    Recent studies confirm that adding OCT to standard screening significantly increases diagnostic accuracy for DME. Therefore, many experts recommend combining fundus photography with OCT in patients with long-standing diabetes, poor glycemic control, or complaints of vision deterioration.

    What does diabetic retinopathy look like on OCT?

    Diabetic retinopathy OCT scans offer a unique opportunity to identify changes not always seen on fundus photography.

    Typical DR OCT findings include:

    • Destruction of outer retinal layers, particularly the ellipsoid zone, indicating photoreceptor damage
    • Intraretinal hyperreflective foci, hard exudates
    • Microaneurysms
    • Changes in retinal thickness and neuroepithelial layer atrophy
    • Diabetic macular edema with intraretinal hyporeflective cystoid spaces and neuroepithelial swelling
    • Subretinal fluid, resulting from increased vascular permeability
    • Disorganization of inner retinal layers (DRIL), an unfavorable prognostic sign associated with reduced visual acuity
    • Development of epiretinal membranes

    Diabetic Retinopathy Screening with AI

    OCT also detects proliferative changes and tractional zones, which may lead to tractional retinal detachment.

    Beyond structural analysis, OCT angiography (OCTA) is increasingly used to visualize microvascular retinal changes without contrast injection. OCTA helps identify neovascularization, capillary network disruption, and the extent of macular ischemia.

    What are the screening intervals for diabetic retinopathy?

    The screening frequency for diabetic retinopathy must be tailored to diabetes type, disease stage, and risk factors:

    Type 1 diabetes

    • First screening: 3–5 years after diagnosis (due to onset in children and young adults)
    • Then annually, if no DR is detected
    • If DR is present, frequency depends on severity

    Type 2 diabetes

    • Screening at diagnosis, as DR may already be present.
    • If no DR, repeat every 1–2 years.

    Patients with confirmed DR

    • No visible DR, mild non-proliferative diabetic retinopathy (NPDR), no DME — every 1–2 years
    • Moderate NPDR — every 6–12 months.
    • Severe NPDR — every 3 months.
    • Proliferative DR (PDR) — monthly, with regular OCT monitoring of the macula.
    • DME — monthly if center-involving, every 3 months if not.

    Pregnant women with type 1 or type 2 diabetes

    • Screening before conception or in the first trimester, with follow-up each trimester and postpartum
    • Screening is not required for gestational diabetes without pre-existing diabetes

    Post-treatment patients (laser or vitrectomy)

    • Typically, every 3–6 months during the first year, individualized based on retinal stability
    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are OCT biomarkers for diabetic macular edema?

    OCT is a key method for detecting DME, thanks to its ability to visualize retinal layers with micron resolution. OCT not only confirms DME presence but also identifies biomarkers with prognostic value for treatment selection, therapy response prediction, and monitoring.

    Main OCT biomarkers in DME:

    • Cystoid hyporeflective intraretinal spaces, usually found in the inner nuclear layer (INL) or outer plexiform layer (OPL). Their number, size, and location correlate with edema severity. Large or confluent spaces may indicate chronicity and a worse prognosis.
    • Subretinal fluid (fluid between the neurosensory retina and retinal pigment epithelium). While often associated with a better visual prognosis, it requires careful monitoring and consideration in anti-VEGF therapy.
    • Central macular thickening. Changes in macular thickness are key indicators of treatment effectiveness.

    DR Screening with Altris AI

    Monitoring diabetic retinopathy: OCT red flags

    Patients with DR require ongoing monitoring to identify early signs of progression. Worrisome OCT signs of disease progression include. Worrisome OCT signs of disease progression include:

    • Progressive central macular thickening despite treatment.
    • Increase in intraretinal or subretinal fluid, appearance or enlargement of cystoid spaces
    • Appearance of new hyperreflective foci, signaling inflammatory activity. Hyperreflective foci may precede hard exudates or RPE changes.
    • Appearance or progression of DRIL. DRIL is an independent predictor of poor prognosis, even when morphological improvement is seen on OCT.
    • Ellipsoid zone disruption, indicating photoreceptor damage.
    • Signs of macular ischemia. Although better evaluated with OCTA, indirect signs on OCT may include thinning of the inner retinal layers.
    • Tractional changes: epiretinal membrane formation, inner retinal stretching, or macular traction.

    AI in optometry

     

    The appearance of these OCT signs should prompt reassessment of therapy, potential regimen adjustment (e.g., switching anti-VEGF agents, introducing steroids, or combination therapy), and referral to retinal surgeons when tractional changes are present.

    Diabetic retinopathy treatment

    Treatment of DR requires a comprehensive approach, taking into account disease stage, individual patient characteristics, OCT findings, comorbidities, and prognostic biomarkers.. Modern strategies include preventive, pharmacological, and surgical methods, as well as personalized medicine tools based on retinal imaging.

    1. Risk stratification and treatment choice
      Therapy is chosen based on:
    • DR stage (non-proliferative, proliferative, with or without DME).
    • DME form (focal, diffuse, with or without subretinal fluid).
    • Presence of DRIL, EZ disruption, ischemic changes on OCTA.
    • Response to prior therapy (anti-VEGF, steroids, laser).
    • Comorbidities (renal insufficiency, hypertension, poor compliance).

    Low-risk patients may undergo observation or focal laser. Those with significant DME — anti-VEGF or steroid injections. Proliferative DR patients often require panretinal laser photocoagulation or vitrectomy.

    1. Pharmacotherapy: anti-VEGF and steroids
      Anti-VEGF agents (aflibercept, ranibizumab, bevacizumab) remain first-line therapy for DME, especially effective in patients with significant edema and no ischemia. New agents with extended effects, including port delivery systems, are emerging.
      Steroids are used in persistent DME, anti-VEGF resistance, or inflammatory phenotypes.
    2. Laser therapy
      Although injections have largely replaced laser for DME, panretinal photocoagulation remains standard for proliferative DR. Subthreshold micropulse laser is increasingly used for focal edema with minimal tissue impact.
    3. Surgery
      Vitrectomy is indicated in cases of tractional macular edema, vitreous hemorrhage, or retinal detachment.
    4. Personalization based on OCT
      Modern treatment protocols integrate OCT biomarkers for tailored strategies and prognosis. AI systems can automatically generate treatment protocols from OCT data, highly valuable where retina specialists are limited.
    5. Patient education and multidisciplinary care
      Treatment success depends heavily on patient adherence. Patients must understand the need for regular injections, monitoring, and systemic control. Collaboration between ophthalmologists, endocrinologists, and family doctors ensures stable glycemic control and slows DR progression.

    Conclusion

    Screening and monitoring of diabetic retinopathy are evolving rapidly with advances in telemedicine, AI, and OCT-based imaging. Early detection through decentralized, technology-driven approaches, combined with individualized monitoring and biomarker-guided treatment, is critical to preserving vision. Personalized care strategies—supported by imaging technologies and multidisciplinary collaboration—offer the most effective means to reduce the global burden of DR-related blindness.

  • Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska, CMO
    1 min.

    Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    Chicago, IL – August 26, 2025 – Altris AI introduces an advanced flagging system to search through the large volumes of OCT scans, including historical data.

    Now, with Altris AI’s new functionality, eye care professionals can instantly identify OCT scans with specific retina pathologies or biomarkers from the list of over 70 conditions. For example, clinicians can locate OCT scans of all patients with a Soft Drusen or Dry AMD, forming cohorts for clinical or research purposes.

    For those who work with Geographic Atrophy biomarkers, it is also possible to exclude the presence of GA biomarkers in 1, 3,6 mm ETDRS zones to spot early development of this pathology.

    The flagging system is precise and enables fast, targeted searches across historical records and large datasets – including OCT scans from different devices. This advancement supports a more efficient workflow and enhances access to critical data for both diagnostics and research.

    “Flags are a clinical shortcut. Instead of manually searching through thousands of scans, you can now filter precisely for what you need—whether that’s subretinal fluid, GA progression, or early glaucoma indicators. It’s about making the data work for you.” Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI.

    With flags for smart filtering, eye care specialists can:

    • Track risk-related biomarkers and set reminders for patient follow-ups
    • Quickly identify eligible candidates for clinical studies by searching through large volumes of data
    • Confidently introduce new treatments by finding the right patient profiles
    • Filter rare or complex cases to study unique combinations of pathologies and biomarkers and their progression

    “Flags make it possible to build patient cohorts in minutes,” Maria Znamenska, Chief Medical Officer at Altris AI, comments on this new feature. “Whether it’s for the research or for introducing the new therapy, you now have a reliable tool to search for the right patients efficiently.

    For example, the FDA has recently approved the first treatment for Macular Telangiectasia Type 2, so eye care specialists can now search through their whole patient database and find those who have this particular pathology in minutes to offer them a new treatment.”

    The release of flags reinforces Altris AI’s position as a leading AI decision support platform for OCT analysis for both clinical care and research purposes. By enabling customizable filtering across over 70 pathologies and biomarkers, flags support better disease tracking, faster research, and more personalized treatment planning.

    About Altris AI
    Altris AI is a vendor-neutral, web-based AI Decision Support for OCT Analysis platform. It supports early diagnosis, treatment planning, and research across more than 70 biomarkers and retinal pathologies. Altris AI is used by leading clinics and research centers worldwide.

  • Altris AI Achieves MDSAP Certification, Strengthening Global Presence and Clinical Credibility

    AI Ophthalmology and Optometry | Altris AI Altris Inc.
    22.08.2025
    1 min.

    22.08.2025

    Altris AI Achieves MDSAP Certification, Strengthening Global Presence and Clinical Credibility

    Altris Inc., a leading AI decision support platform for OCT scan analysis, proudly announces that it has passed the Medical Device Single Audit Program (MDSAP) audit. 

    Based on the objective evidence reviewed, this audit enables a recommendation for Initial certification to ISO 13485:2016 MDSAP, including the requirements of Australia, Brazil, Canada, the USA, and Japan, and EU 2017/745, and that the scope was reviewed and found to be appropriate for ISO 13485:2016/MDSAP and EU MDR 2017/745.

    The results of this audit are suitable for obtaining the EU MDR 2017/745 certificate, which we are currently in the process of pursuing.

    ISO 13485:2016/MDSAP enables Altris Inc. to “design, manufacture, and distribute medical software for the analysis and diagnosis of retinal conditions globally.” It is recognized by leading global health regulators and signals trust and credibility to public and private hospitals, eye care networks, and optometry chains worldwide. 

    MDSAP Certification also opens the door for Altris Inc. to enter new international markets, including Asia-Pacific, Latin America, and additional parts of North America. The MDSAP certification allows a single regulatory audit of Altris AI’s Quality Management System (QMS) to be recognized by multiple major health authorities, including:

    • FDA (United States)
    • Health Canada
    • TGA (Australia)
    • ANVISA (Brazil)
    • MHLW/PMDA (Japan)

    MDSAP enforces that the Quality Management System for developing, testing, and maintaining AI Decision Support for OCT complies with international medical device standards. Altris AI Decision Support for OCT Analysis system that facilitates the detection and monitoring of over 70 retinal pathologies and biomarkers, including early signs of glaucoma, diabetic retinopathy, and age-related macular degeneration. 

    “Achieving ISO 13485:2016 certification under the stringent MDSAP requirements is a significant accomplishment for our team,” said Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI. “As a practicing ophthalmologist, I understand that the safety of patients is the absolute priority. Especially when implementing such an innovative technology as AI for decision support in OCT analysis. That is why we did everything possible to build quality processes that guarantee the highest level of safety for the patients.

    This certification enables Altris AI to expand its presence and offer eye care specialists upgraded functions such as GA progression monitoring, flags for smart patient filtering, or automated drusen count.”

    “This is more than a regulatory milestone for our team  – it’s a signal to the global eye care community that Altris AI is a trusted clinical partner,” said Andrey Kuropyatnyk, CEO of Altris AI. 

    About Altris AI

    Founded in 2017, Altris AI is at the forefront of integrating artificial intelligence analysis into ophthalmology and optometry.

    The company’s platform is designed to assist eye care professionals in interpreting OCT scans with greater objectivity and make informed treatment decisions. It’s a vendor-neutral platform compatible with OCT devices from 8 major global manufacturers. With a commitment to innovation and compliance, Altris AI continues to develop solutions that set higher standards in the eye care industry and improve patient outcomes.

     

  • Glaucoma OCT Monitoring: From Early Detection to Ongoing Management

    Glaucoma OCT monitoring with Altris AI
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Glaucoma OCT Monitoring: From Early Detection to Ongoing Management

    Table of Contents

    1. Why is early detection of glaucoma so important?

    2. How to detect glaucoma in early stages: key methods

    3. Why is OCT glaucoma monitoring important after diagnosis?

    4. What additional tools are used to monitor glaucoma treatment?

    5. Conclusion

    According to the World Health Organization (WHO), glaucoma is the second most common cause of blindness globally, following cataracts, but the leading cause of irreversible blindness. The challenge lies in the fact that most forms of glaucoma are asymptomatic in the early stages, meaning the diagnosis is often made only after significant loss of retinal ganglion cells has occurred.

    Traditional methods of detecting glaucoma, such as ophthalmoscopy and perimetry, remain valuable but have notable limitations—especially in terms of sensitivity to early changes. Functional tests like perimetry typically detect damage only after 30–40% of the optic nerve fibres have already been lost. This is why modern ophthalmology increasingly relies on techniques that detect structural damage before functional loss appears.

    Optical Coherence Tomography (OCT) has fundamentally changed glaucoma diagnostics over the past two decades. It enables non-invasive, micron-level imaging of retinal microstructures and provides objective measurements of the retinal nerve fibre layer (RNFL), ganglion cell complex (GCC), and optic nerve head (ONH) parameters. Moreover, the advent of OCT angiography (OCTA) has introduced a new dimension in assessing microcirculation—complementing structural analysis and potentially predicting glaucoma progression.

    Today, OCT is the standard for early detection, monitoring, and risk stratification of glaucoma progression, as recognised in international clinical guidelines. When combined with functional tests, tonometry, and anterior chamber angle assessment, OCT becomes the foundation for personalised glaucoma management.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    This article aims to consolidate current OCT capabilities in glaucoma diagnosis. It explores key biomarkers, progression assessment techniques, integration with other diagnostic tools, and the role of patient involvement in disease monitoring.

    Why is early detection of glaucoma so important?

    Early detection of glaucoma is critical, as optic nerve damage in glaucoma is irreversible. Many patients seek care only after considerable vision loss has occurred, at which point treatment can slow progression but cannot restore lost function. This is why the ophthalmic community emphasizes the importance of detecting glaucoma at preclinical or pre-perimetric stages.

    How does OCT help in detecting glaucoma early?

    OCT provides high-resolution imaging of the retina and optic nerve head. Unlike subjective functional tests, OCT offers objective, quantitative information on ganglion cells, nerve fibre layers, and the neuroretinal rim, enabling detection of even subtle deviations from the norm.

    Recent OCT models provide even deeper visualization, including the lamina cribrosa, the structure of which is altered in glaucoma. Today, OCT is recognized as a key diagnostic method in the guidelines of the European Glaucoma Society and the American Academy of Ophthalmology.

    How to detect glaucoma in early stages: key methods

    There are four methods to detect glaucoma early: measuring Ganglion Cell Complex (GCC) thickness and GCC asymmetry, RNFL thickness analysis, evaluating optic nerve head parameters and the DDLS scale, and using optical coherence tomography angiography (OCTA) to evaluate other parameters that may indicate glaucoma.

    Glaucoma detection method 1: measuring GCC thickness and asymmetry

    One of the most sensitive preclinical biomarkers of glaucomatous damage is thinning of the ganglion cell complex (GCC), which includes the ganglion cell layer (GCL), inner plexiform layer (IPL), and macular RNFL (mRNFL). It is assessed through macular OCT scans. Damage in this area is particularly critical, as 50–60% of all ganglion cells are concentrated within the central 6 mm zone.

    Measuring GCC Thickness and Asymmetry

    Assessing asymmetry between the superior and inferior halves of the macula within the GCC is a key diagnostic indicator. Studies show that minimum GCC thickness and FLV/GLV indices (Focal Loss Volume / Global Loss Volume) are predictors of future RNFL thinning or emerging visual field defects. Asymmetry maps significantly ease clinical interpretation.

    A newer approach—vector analysis of GCC loss—also allows clinicians to visualise the direction of damage, which often correlates with future visual field defects.

    Measuring Ganglion Cell Complex (GCC) Thickness and GCC Asymmetry

    Glaucoma detection method 2: RNFL thickness analysis

    RNFL analysis is among the most widely used glaucoma diagnostic methods. The RNFL reflects the axons of the ganglion cells and is readily measured in optic nerve scans. Temporal sectors are the most sensitive and often show the earliest changes.

    Even when the overall thickness appears normal, localised defects should raise suspicion. Sectoral thinning of ≥5–7 μm is considered statistically significant. Age-related RNFL decline (~0.2–0.5 μm/year) must also be considered.

    Glaucoma detection method 3: optic nerve head parameters and the DDLS scale

    Evaluating the optic nerve head (ONH) is essential. OCT enables automated assessment of optic disc area, cup-to-disc ratio (C/D), cup volume, rim area, and the lamina cribrosa.

    Glaucoma oct assessment

    The Disc Damage Likelihood Scale (DDLS) classifies glaucomatous ONH changes based on the thinnest radial rim width or, if absent, the extent of rim loss. Unlike the C/D ratio, DDLS adjusts for disc size. When combined with OCT, DDLS significantly enhances objective clinical assessment.

    In high myopia, automatic ONH segmentation often misclassifies anatomy. Here, newer deep learning–based segmentation models improve accuracy.

    Evaluating the optic nerve head (ONH)

    Glaucoma detection method 4: OCTA

    OCTA enables evaluation of:

    • Vessel density in the peripapillary region
    • Optic nerve and macular vascularization
    • Retinal vs. ONH perfusion in both eyes

    OCTA for early glaucoma detection

    Studies confirm that reduced vessel density correlates with RNFL loss and visual field deterioration, and often precedes both.

    Why is OCT glaucoma monitoring important after diagnosis?

    Glaucoma can progress even with stable intraocular pressure (IOP), making regular structural assessment of the optic nerve and inner retina crucial for therapy adjustment.

    Glaucoma OCT is not only a diagnostic tool but also the primary method for monitoring glaucomatous damage. Unlike functional tests, OCT can detect even minimal RNFL or GCL thinning—months or even years before visual field loss appears. With serial measurements and built-in analytics, OCT allows clinicians to track progression rates and identify high-risk patients.

    What are the primary methods to monitor glaucoma progression?

    Two primary methods to monitor glaucoma progression are event-based analysis and trend-based analysis.

    Glaucoma progression monitoring method 1: event-based analysis

    This method compares current scans with a reference baseline, identifying whether RNFL or GCL thinning exceeds expected variability.

    📌 Example: Heidelberg Eye Explorer (HEYEX) highlights suspicious areas in yellow (possible loss) or red (confirmed loss).

    Limitations include sensitivity to artifacts, image misalignment, and segmentation quality. A high-quality baseline scan is essential.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Glaucoma progression monitoring method 2: trend-based analysis

    This approach accounts for time. The software plots RNFL/GCL thickness trends over time in selected sectors or globally and calculates the rate of progression.

    Examples:

    • RNFL thinning >1.0 μm/year is clinically significant.
    • Thinning >1.5 μm/year indicates active progression.

    It also accounts for age-related changes, helping differentiate physiological vs. pathological decline.

    What does a visual assessment of glaucoma progression involve?

    Visual assessment of glaucoma progression involves qualitative analysis of B-scans and colour maps (RNFL deviation map, thickness map).

    Here’s what is evaluated during a glaucoma OCT assessment:

    • Focal RNFL thinning (localised defects)
    • Changes in the neuroretinal rim
    • Alterations in ONH cupping
    • GCL/GCIPL comparison (superior vs. inferior) on macular maps
    • New segmentation artifacts (may mimic progression)

    Visual glaucoma OCT analysis

    What OCT glaucoma findings indicate true progression?

    Five OCT glaucoma findings indicate true progression:

    • RNFL thinning >10 μm in one sector or >5 μm in several sectors
    • New or worsening GCL asymmetry (yellow to red colour shift)
    • Emerging or expanding RNFL defects on colour maps
    • Increasing C/D ratio with concurrent rim thinning
    • New localised areas of vessel density loss on OCTA

    Particular attention should be paid to the inferotemporal and superotemporal RNFL sectors, where 80% of early changes occur.

    How frequently should glaucoma OCT monitoring be done?

    According to the AAO and EGS, the recommended frequency for glaucoma OCT monitoring is as follows:

    • High-risk patients: every 6 months

    • Stable patients: once a year

    • For trend analysis: at least 6–8 scans over 2 years to ensure statistical reliability

    Looking ahead, broader use of AI for glaucoma is expected to support earlier and more accurate detection, while also reducing false positives.

    What additional tools are used to monitor glaucoma treatment?

    While OCT is essential for detecting structural changes, a comprehensive glaucoma assessment requires a multimodal approach. Additional tools used to monitor glaucoma treatment include perimetry, tonometry, optic disc fundus photography, and gonioscopy.

    Perimetry or visual field testing

    Functional assessment of the optic nerve remains essential. Standard Automated Perimetry (SAP), typically using Humphrey Visual Field Analyzer protocols (24-2, 30-2, and 10-2), is the most widely used method.

    Key perimetric indices include:

    • MD (Mean Deviation): shows the average deviation from normal values

    • PSD (Pattern Standard Deviation): highlights localized defects

    • VFI (Visual Field Index): summarises global visual function; useful for tracking progression

    • GHT (Glaucoma Hemifield Test): provides automated analysis of field asymmetry

    However, structural and functional changes don’t always align. In 30–50% of cases, structural changes—such as RNFL thinning on OCT—precede detectable visual field defects. In other cases, the opposite occurs.

    As a result, current best practice relies on integrated OCT and perimetry analysis to correlate the location of damage and monitor glaucoma progression more precisely.

    Combined OCT and perimetry remains the gold standard for glaucoma progression monitoring.

    Tonometry

    Intraocular pressure (IOP) is the only clearly modifiable risk factor associated with both glaucoma onset and progression. Even elevated IOP within the upper-normal range can be linked to structural and functional decline.

    Goldmann applanation tonometry continues to be the gold standard for IOP measurement.

    Assessment should not be based on a single IOP reading. Diurnal fluctuations are an independent risk factor, particularly in cases of normal-tension glaucoma.

    Optic disc fundus photography

    Although subjective, fundus imaging is still valuable for documenting glaucomatous changes, especially in ambiguous or borderline cases. Unlike OCT, it does not provide quantitative data, but it helps visualise morphological changes over time.

    What to assess:

    • Progressive disc cupping

    • Changes in neuroretinal rim shape or colour

    • Disc margin haemorrhages (associated with faster RNFL thinning and visual field loss)

    • Inter-eye comparisons

    Gonioscopy

    Gonioscopy is used to evaluate the anterior chamber angle, especially to exclude angle-closure, pigmentary, or pseudoexfoliative glaucoma. It also helps identify neovascularisation, trabecular meshwork abnormalities, and other angle anomalies.

    Final note: To form a complete clinical picture, structural findings, functional test results, and IOP measurements must all be considered together.

    Patient education: a key to successful glaucoma management

    Effective glaucoma management relies not only on accurate diagnosis and appropriate treatment but also on patient adherence to monitoring and therapy.

    The challenge:

    In the early stages, glaucoma is typically asymptomatic. As a result, many patients underestimate its seriousness. This often leads to poor compliance, missed follow-up appointments, and self-discontinuation of prescribed medications.

    The goals of patient education:

    • Clearly explain that glaucoma progresses silently but can lead to irreversible blindness if left untreated.

    • Use real-life examples—such as before/after OCT scans and visual field comparisons—to demonstrate disease progression.

    • Educate patients to recognise warning signs or complications (e.g., changes in vision, eye pain).

    • Visualise disease progression with AI tools that display RNFL loss and predict future risk.

      AI Ophthalmology and Optometry | Altris AI
      AI Decision Support for OCT

      Try Altris AI for free

      Book intro + free trial Get a brochure

    Educational resources may include:

    • Printed brochures with simple, patient-friendly language

    • Videos featuring actual OCT images and explanations

    • In-clinic discussions between doctor and patient

    • Telemedicine platforms offering personalised reminders and follow-up prompts

    According to the AAO, patients with a basic understanding of glaucoma are 2.5 times more likely to adhere to treatment and attend routine check-ups.

    Conclusion

    OCT now plays a central role in both diagnosing and monitoring glaucoma. Its ability to detect subtle structural changes—before measurable functional loss—makes early intervention possible and increases the likelihood of preserving vision.

    Key biomarkers include RNFL, GCC, and ONH parameters. Event-based and trend-based analyses, colour-coded deviation maps, and OCTA for assessing microcirculation give ophthalmologists reliable, quantitative tools for evidence-based decision-making.

    When combined with functional testing and individual risk profiling, these tools support a personalised approach to glaucoma care.

    However, technology alone is not enough. Accurate interpretation—and strong patient understanding—are equally essential. When patients fully grasp the nature of the disease and the role of OCT in managing it, adherence improves and outcomes are better.

    OCT is not just a diagnostic tool; it is the foundation of an integrated, evidence-based strategy for glaucoma management, from initial screening through to long-term monitoring and treatment optimisation.

  • Inside the Power Hour: Altris AI’s Take on AI Innovation in Eye Care

    Innovation in Eye Care: Interview with Grant Schmid
    AI Ophthalmology and Optometry | Altris AI Grant Schmid
    3 min

    Inside the Power Hour: Altris AI’s Take on AI Innovation in Eye Care

    Our Vice President of Business Development, Grant Schmid, took part in The Power Hour podcast to discuss how AI and automation are shaping the future of patient experience. We turned that conversation into an interview and pulled out the most compellinsubtle anatomical g insights on tech-enabled practice growth and innovation in eye care.

    Eugene Shatsman: Can you start by introducing Altris AI and what problem you’re solving in eye care?
    Grant Schmid: Altris AI was founded in 2017 in Chicago, with the University of Chicago as our first investor. But most of our team — and the heart of our development — is based in Ukraine.

    We focus on AI for OCT analysis. Our goal is to provide decision support that helps identify over 70 different pathologies and biomarkers, no matter what OCT device a clinic uses. The idea is to speed up image interpretation, ensure nothing is missed, and support doctors in delivering top-quality care.

    Decision support regardless OCT device

    Eugene: What initially inspired the development of Altris AI?
    Grant: Our co-founder is a retina specialist from Kyiv. She wanted a way to improve the referral process and increase the OCT knowledge of those referring patients to her. That’s how the idea of a clinical decision support platform was born.

    We actually started with an educational OCT app that you can still download — many doctors come to our booth at trade shows not realizing that the app is also part of what we’ve built.

    Eugene: What does a typical OCT workflow look like with and without Altris AI?
    Grant: In many modern practices, every patient now gets an OCT. It’s used to screen for diseases like AMD, glaucoma, or diabetic retinopathy. But subtle anatomical differences can confuse even experienced clinicians.

    AI Ophthalmology and Optometry | Altris AI

    Learn more about Altris AI’s Decision Support for OCT analysis

    Register in a Demo Get a Brochure

     

    With Altris AI, the doctor gets an analysis almost immediately — color-coded overlays, pathology markers, optic disc assessments, all in one place. This speeds up the review process and supports clinical decision-making without disrupting workflow.

    Eugene: What do you say to clinicians who say, “I already know how to read OCTs — why do I need AI?”
    Grant: Many doctors are confident in interpreting OCTs, and that’s great. But the value isn’t just in identifying disease — it’s in validation and patient education.

    We’re not here to replace what doctors do. Altris AI validates what you already know and makes it easier to communicate with patients. We highlight what might be missed, and we provide visual tools that help explain findings clearly — which leads to better patient understanding and trust.

    Visualize OCT Analysis

    Eugene: Can you give an example of how this helps patient education?
    Grant: Absolutely. Let’s take glaucoma. Many patients on drops don’t feel or see any change, so they think, “Why bother?” But if you can show them a progression or show that things are stable, it becomes real to them.

    We launched an Optic Disc Analysis feature that lets you compare up to eight past visits side-by-side. So when a patient asks, “Is this working?” you can say, “Yes, here’s the proof.” That drives adherence and builds trust.

    Eugene: Are practices today ready to embrace AI-based tools? Or are they still cautious?
    Grant: There’s a lot of curiosity, a lot of interest. Some are still figuring out how to implement AI in a way that makes sense for them.

    But AI is everywhere now — whether it’s in search engines, smartphones, or how we shop. Patients expect that kind of intelligence in their healthcare, too. In fact, a 67-year-old tugboat captain with AMD once called me asking about our software and offered to pay for his doctor’s subscription. That tells you how fast expectations are changing.

    Eugene: Can AI actually improve the patient experience beyond just diagnosis?
    Grant: Absolutely. Patients want to understand what’s happening with their health. When you can show them their scan results with overlays and simple visuals, they feel included in the process.

    It’s not just about detecting disease, it’s about building trust. Clear visual communication boosts confidence, reduces anxiety, and increases compliance.

    AI Ophthalmology and Optometry | Altris AI

    Learn more about Altris AI’s Decision Support for OCT analysis

    Register in a Demo Get a Brochure

     

    Eugene: Some fear AI will replace clinicians. What’s your perspective on that?
    Grant: That’s one of the biggest myths out there. AI won’t replace clinicians — it enhances what they do.

    We’re not cleared to diagnose. We’re a decision-support tool. Doctors still make the final decision, but we give them more data, faster and more clearly. Human clinical judgment is still irreplaceable — we just help sharpen it.

    AI Decision Support Tool

    Eugene: What barriers are you seeing when introducing Altris AI to new practices?
    Grant: The main one is comfort — many doctors feel confident reading OCTs and don’t immediately see the need.

    The other is simply awareness. We’re a fast-growing startup, but many still don’t know about us. That’s why opportunities like this podcast are important.

    In terms of logistics, there’s no barrier. Altris AI is web-based, nothing to install, and takes just 20 minutes to learn. We’re designed to be plug-and-play.

    Eugene: If a practice wants to engage patients more using AI in eye care, how should they approach it?
    Grant: One great idea is to run a recall campaign for patients who haven’t had an OCT in the last 6 or 12 months. Something like, “We now use AI to enhance your OCT scan — come see how it works.”

    AI is a differentiator. It shows your clinic is modern, patient-focused, and using the best available tools.

    Eugene: What do you think the optometry practice of 2028 will look like?
    Grant: I think you’ll see AI systems talking to each other. Imagine our platform detecting something on a scan and automatically triggering a patient reminder or a suggested follow-up.

    There will be less manual work and more focus on human care. The doctor will be able to walk in and focus completely on the patient — the AI will handle the background tasks like charting or longitudinal comparisons.

    Ultimately, better care, less burnout.

    Eugene: What’s one myth you’d like to bust about AI in optometry?
    Grant: That AI will replace people. It won’t. What it does is make you more effective. You’ll have sharper insights, clearer visuals, and faster decision-making — all without replacing your clinical experience.

    Eugene: And finally, how can practices get started with Altris AI?
    Grant: Just go to  altris.ai or connect with us on LinkedIn. We offer live demos and can use your real OCT scans to show exactly how it works.

    There’s no software to install, no major investment, and we operate on a subscription basis — so there’s no long-term risk. If you’re curious, reach out. We’d love to show you what’s possible.

    Watch the complete Power Hour podcast episode below for more insights on AI, automation, and innovation in eye care:

     

  • Dry AMD Treatment: How to Slow Progression with Modern Approaches

    Dry AMD Treatment: Modern Approaches
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min.

    Dry AMD Treatment: How to Slow Progression with Modern Approaches

    Table of Contents

    1.What are the dry macular degeneration treatment breakthroughs?

    2.How to monitor dry AMD progression with OCT?

    3.What are the challenges of dry age-related macular degeneration monitoring?

    4.How do I organize efficient dry AMD monitoring in my clinic?

    5.Why are optometrists on the front line of early AMD detection?

    6.How can OCT insights help support patients emotionally?

    7.Conclusion

    For many years, dry or non-exudative AMD was considered untreatable. Most efforts were focused on treating the wet or exudative AMD with anti-VEGF drugs. However, this paradigm has recently shifted.

    The first FDA-approved drugs appeared recently to treat geographic atrophy (GA), which affects 30% of patients with dry AMD. Additionally, new physiotherapeutic methods, such as multi-wavelength photobiomodulation, have emerged.

    Geographic atrophy (GA) is an advanced, irreversible form of dry age-related macular degeneration (AMD). It develops when areas of the retina, the light-sensitive tissue at the back of the eye, undergo cell death (atrophy), causing progressive vision loss. 

    However, even the best dry AMD treatment is ineffective without an objective way to measure its success. Updated guidelines suggest advanced tools for monitoring progression, and optical coherence tomography (OCT) is at the core of this process.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are the dry macular degeneration treatment breakthroughs?

    The dry macular degeneration treatment breakthroughs include multiwavelength photobiomodulation, FDA-approved injectable drugs, and AREDS 2-based supplements. Unlike older recommendations focused on reducing risk factors — quitting smoking, managing blood pressure, and eating a healthy diet — these new approaches for dry AMD combine prevention with active treatment strategies to slow the progression of GA.

    1. Dry AMD treatment using multiwavelength photobiomodulation

    Multiwavelength photobiomodulation for AMD is a promising new treatment. It uses specific light wavelengths (in the red and near-infrared spectrum, ~590 to 850 nm) to reduce oxidative stress, inflammation, and pigment epithelial cell death in the retina.

    One of the most well-known systems used for this approach is Valeda Light Therapy, which delivers controlled multiwavelength light to the retina in a non-invasive manner.

    The LIGHTSITE III clinical trial (2022) showed that photobiomodulation significantly slowed the decline in visual acuity and reduced the rate of GA expansion.

    Limitations:

    • Limited long-term data (only 3–5 years available)
    • Requires expensive equipment and trained personnel
    • Unclear effectiveness in late-stage GA

    Multiwavelength photobiomodulation

    2. Dry AMD treatment using FDA-approved injectable drugs

    AMD injection drugs approved by the FDA include Izervay and Syfovre.

    • Izervay (avacincaptad pegol): A C5 complement protein inhibitor that targets the complement cascade involved in chronic retinal inflammation and damage. Izervay, approved for geographic atrophy secondary to dry AMD, has demonstrated a reduced rate of GA progression in clinical trials.
    • Syfovre (pegcetacoplan): A C3 complement inhibitor that blocks the central component of the complement system to reduce inflammation. Syfovre is the first FDA-approved treatment for GA that targets complement component C3, showing a clinically meaningful slowing of GA progression.

    Both dry macular degeneration injections have shown the ability to slow GA progression compared to placebo. Although they do not restore vision, slowing vision loss is a meaningful clinical outcome.

    Usage considerations:

    • Administered via intravitreal injections, usually monthly or every other month
    • Doctors need training; patients must be informed about risks (e.g., endophthalmitis, increased IOP)
    • Cost and availability may be barriers

    Intravitreal injections

    3. Dry AMD treatment using AREDS 2-based supplements

    AREDS 2 supplements are antioxidant supplements containing lutein, zeaxanthin, vitamins C and E, zinc, and copper. They can reduce the risk of progression to late stage AMD by around 25% over five years, according to the AREDS 2 study.

    Pros:

    • Easily accessible
    • Low risk of side effects
    • A strong evidence base

    Cons:

    • Does not directly affect GA
    • Cannot replace active treatments like injections or photobiomodulation

    How to monitor dry AMD progression with OCT?

    To monitor dry AMD progression effectively, OCT is essential. It is the gold standard for tracking structural changes in the retina. Without OCT, clinicians are essentially flying blind when it comes to assessing disease progression and predicting geographic atrophy (GA) development.

    What are the key monitoring parameters of AMD progression?

    The key monitoring parameters of AMD progression include GA area, drusen, and distance to fovea.

    1. GA area

    This is the main metric when using intravitreal eye injections. Modern OCT systems provide GA measurements in mm², allowing doctors to objectively track changes over time.

    Even if patients don’t notice symptoms, a growing GA area signals disease progression. In FDA trials for Syfovre and Izervay, the GA area was the primary endpoint.

    Tracking GA progression

    2. Drusen

    Drusen vary in number, size, and shape. A reduction or disappearance of drusen on OCT may seem like an improvement, but could actually indicate a transition to the atrophic stage. Regular monitoring helps detect this early.

    3. Distance to fovea

    The closer GA is to the fovea, the greater the risk of sudden vision loss.

    Early detection enables:

    • Referral to an ophthalmologist
    • Timely conversations about potential vision loss

    What are OCT outputs for AMD progression monitoring and communication?

    Useful OCT outputs for AMD progression monitoring and communication are heat maps and progress charts.

    1. Heat maps

    Modern OCT systems use color-coded heat maps to show pigment epithelium thickness and drusen distribution. This visual format helps in several ways:

    • Makes interpretation easier for clinicians
    • Helps patients better understand their condition
    • Encourages patients to stay engaged with treatment

    In clinical practice, it serves as a highly effective communication tool.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    2. Progress charts

    Most OCT systems can compare results across visits

    • For doctors: Helps guide treatment decisions
    • For patients: Provides visual proof of stabilization or worsening

    Dry Macular Degeneration Treatment Breakthroughs

    The role of objective evidence in patient treatment

    Patients may question the value of long-term treatments or costly procedures.

    OCT is the gold standard for patient motivation. When patients see actual changes, they’re more likely to agree to treatment.

    What are the challenges of dry age-related macular degeneration monitoring?

    Monitoring dry AMD presents technical, organizational, and psychological challenges. Doctors of all levels of experience should be aware of them.

    1. Invisible microchanges

    Early atrophy or drusen changes may be subtle. Patients may not notice them due to eccentric fixation or slow adaptation.

    Without OCT, doctors may miss early GA, delaying treatment.

    It is necessary to perform OCT even when there are only minor changes in visual acuity or if the patient reports image distortion (metamorphopsia).

    2. Subjective assessment

    Ophthalmoscopy reveals only obvious changes. Subtle drusen or early atrophy might be missed.

    Relying on patients’ complaints is risky — many don’t notice issues until it’s too late.

    That’s why even small optical practices should establish clear referral pathways for OCT exams.

    3. Unnecessary referrals

    Optometrists or primary care doctors often refer patients to ophthalmologists “just in case,” because they don’t have access to OCT or lack experience interpreting it.

    This puts unnecessary strain on specialists. In many cases, nothing new is done after the exam because there are no previous images for comparison.

    4. Limitations of OCT devices

    Not all OCT devices measure GA or track drusen equally well. Older models may lack automated measurements of atrophy area.

    In some cases, referral to a center with advanced OCT is necessary.

    Variety of OCT devices

    How do I organize efficient dry AMD monitoring in my clinic?

    Here’s how you can organize efficient monitoring in your clinic:

    Tip 1. Create a baseline chart

    During the first visit, perform a detailed OCT scan to measure GA area, evaluate drusen, and record distance to the fovea. Save the images or print them for future comparison.

    Tip 2. Monitor frequently

    • Early stages: every 6–12 months
    • With GA: every 3–6 months
    • When treated with intravitreal injections: before each injection

    A reminder system helps with patient compliance.

    Tip 3. Standardize your protocol

    Use the same scanning protocols every time to reduce variability.

    Tip 4. Use OCT software tools

    Modern systems offer:

    • Image comparison
    • Automatic GA area calculation
    • Heat map visualization

    Tip 5. Communicate clearly with patients

    Use simple language:

    • These are areas of atrophy, and we’re measuring them
    • These bright spots are drusen we’re monitoring
    • The goal is to slow the growth of these areas

    Educated patients are more engaged in their care.

    Why are optometrists on the front line of early AMD detection?

    Optometrists play a key role in spotting the early signs of AMD, as they are often the first point of contact in eye care.

    They perform initial screenings, provide guidance on lifestyle and supplements, and ensure regular OCT monitoring.

    If drusen, pigment epithelial changes, or signs of GA are present, they refer patients to ophthalmologists for confirmation and treatment planning.

    How can OCT insights help support patients emotionally?

    Explaining a chronic, progressive condition like AMD to elderly patients can be difficult. Motivating them to return for regular follow-ups is often even harder.

    Many ask, “Why bother if it can’t be cured?”

    OCT insights can support both understanding and emotional reassurance. A thoughtful approach may include:

    • Explaining that treatment helps slow vision loss

    • Emphasising their active role in preserving sight

    • Using OCT scans to show visual proof of stability or progress

    Explaining a chronic progressive condition to patients

    Conclusion

    Modern dry AMD treatment is no longer a dead end. With FDA-approved medications, photobiomodulation, and effective supplements, optometrists can significantly impact disease progression.

    But none of this works without quality monitoring. OCT reveals what the eye can’t see and helps guide clinical decisions while motivating patients.

    The ultimate goal is to partner with patients in preserving their vision. This isn’t a one-time visit—it’s a long-term commitment. The stronger the support, the better the chances of maintaining central vision and seeing meaningful results from dry AMD treatment.

  • AItris AI for Buchanan Optometrists

    AI Ophthalmology and Optometry | Altris AI Mark Braddon
    3 min.

    Buchanan Optometrists and Audiologists is no ordinary eye-care center.

    The Association of Optometrists (AOP) estimates 17,500 registered optometrists working across roughly 6,000 practices in the UK. The UK Optician Awards recognise the best in the UK Optical industry.  To even make the top 5 is our equivalent of an Oscar nomination! They are the only practice in the UK to consistently make the top 5 since 2008. Buchanan Optometrists describe themselves as innovators who “continually push boundaries.”

    Their list of awards speaks for itself:

    • 2012 – National Optician Award for Premium Lens Practice of the Year
    • 2013 – Luxury Eyewear Retailer of the Year and Premium Lens Practice of the Year
    • 2013 – Winner at the UK Optician Awards
    • 2015–2016 – Best UK Independent Practice
    • 2017–2018 – Optometrist of the Year, with Alisdair Buchanan named the top optometrist in the UK
    • 2023–2024 – Best Independent Optician and Best Technology Practice

    And this list is not finished, as Alisdair Buchanan, the Owner and the Director of the center, is investing in their growth continuously.

    Buchanan Optometrists are being recognized for their achievements

    With a track record like this, it’s no surprise that Buchanan Optometrists was among the first to adopt AI for Decision Support in OCT. AI is rapidly becoming a vital part of modern eye care, and leading centers are already embracing it.

    Mark Braddon, Altris AI VP of Clinical Sales, sat down with Alisdair Buchanan, the owner and director of the practice, to talk about his experience with AI and what it means for the future of optometry.

    Mark Braddon: You’ve been working with OCT for years. What changed in your practice after bringing in Altris AI Decision Support for OCT?

    Alisdair Buchanan, Owner: As someone already confident in interpreting scans, I didn’t need help understanding OCT—but Altris provides something even more valuable: a kind of second opinion. It supports my clinical decisions and offers an added layer of reassurance, particularly in borderline or complex cases. That’s not just helpful—it’s powerful.

    I didn’t think our OCT assessments could improve much—until we started using Altris AI. It’s not just an upgrade; it’s become an indispensable part of delivering modern, high-quality eye care. Altris AI has significantly enhanced the way we interpret OCT scans. What used to require prolonged focus and cross-referencing now takes moments, without sacrificing accuracy or depth. The system analyses images with incredible precision, highlighting subtle pathological changes that are often time-consuming to detect, especially during a busy clinic day.

    Mark Braddon: What was the first real benefit you noticed after bringing  Altris AI into your day-to-day routine?

    Alisdair Buchanan, Owner: One of the most immediate benefits has been in patient communication. The platform generates clear, colour-coded visuals that make explaining findings effortless. Instead of trying to talk patients through grainy greyscale images, we can now show them precisely what we’re seeing. It’s improved understanding, reduced anxiety, and increased trust in the care we’re providing.

    Mark Braddon: Was it easy to fit AI Decision Support into your OCT workflow? How easy did you find integrating Altris AI?

    Alisdair Buchanan, Owner: Integration was seamless—no faff, no friction. It fits naturally into our existing workflow, with scans uploaded and analysed within seconds. It’s helped us work more efficiently, without compromising the thoroughness our patients expect.

    In short, Altris AI has sharpened our clinical edge and strengthened the service we offer. It doesn’t replace experience—it enhances it. And that, for me, is the real value.

    Mark Braddon: In your experience, where has AI been the most helpful in clinical work?

    Alisdair Buchanan, Owner: The main area where it shines is in picking up early macular changes, particularly dry AMD. Things like drusen or subtle changes in the outer retinal layers, which could easily be missed at a glance, are brought to the surface immediately.

    It’s also been handy with diabetic patients. Just having that extra layer of input to flag microstructural changes helps us stay ahead of progression.

    We’ve also started using it with glaucoma suspects. While our Heidelberg Spectralis remains our go-to for structural monitoring, having the RNFL analysis from Altris adds a checkpoint. I’d never base a referral purely on it, but it’s nice to have a second opinion—even if it’s an AI one.

    Mark Braddon: Has AI Decision Support changed how you handle borderline or difficult-to-call cases?

    Alisdair Buchanan, Owner: I’d say it’s given us more confidence, particularly in the grey areas—those borderline cases where you’re not quite sure if it’s time to refer or just monitor a bit more closely. With AMD, for example, it has helped us catch early signs of progression and refer patients before things become urgent.

    And for glaucoma, again, it’s not replacing anything we do—it’s just another tool we can lean on. Sometimes it confirms what we already thought, and other times it nudges us to look again more carefully.

    Mark Braddon: How has using AI impacted your conversations with patients during consultations?

    Alisdair Buchanan, Owner: One of the unexpected benefits has been how much it helps with patient conversations. We show the scans on-screen during the consultation, and the colour overlays make things much easier to explain, especially with older patients. They can see what we’re talking about, which makes the whole thing feel more real and less abstract.

    They often say, “Ah, now I understand,” or “So that’s what you’re looking at.” It’s not about dazzling them with tech—it just helps make the discussion more transparent and more reassuring.

    Mark Braddon: Some professionals worry that AI might replace human judgment. How do you see its role in clinical decision-making?

    Alisdair Buchanan, Owner: I don’t see Altris AI —or any AI—as a threat to what we do. It’s not here to replace us. We still make the decisions, take responsibility, and guide our patients. But it does help.

    For me, it’s like having a quiet assistant in the background. It doesn’t get everything right, and I certainly wouldn’t act on it blindly—but it prompts me to pause, double-check, and sometimes spot something I might have missed otherwise. That can only be a good thing.

    In short, Altris AI has sharpened our clinical edge and strengthened the service we offer. It doesn’t replace experience—it enhances it. And that, for me, is the real value.

  • AI for Decision Support with OCT: “Altris AI Gave Me More Certainty in My Clinical Decisions”

    AI for Decision Support for OCT
    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    2 minutes

    AI for Decision Support with OCT: An Interview with Clara Pereira, Optometrist from Franco Oculista

    About Franco Oculista Optometry in Portugal.

    Franco Oculista is the optometry center with a 70-year-old history: its roots date back to the mid-1950s in Luanda, where it was founded by Gonçalo Viana Franco. Having left behind a career in pharmacy, Gonçalo pursued his entrepreneurial vision by opening an optician’s bearing his name in the heart of the Angolan capital. Driven by a thirst for knowledge and a deep sense of dedication, he turned his dream into reality. With a commitment to professionalism and a forward-thinking approach, he integrated the most innovative technologies available at the time. This blend of passion, expertise, and innovation established Franco Oculista as a benchmark for quality and excellence in the field. In 1970s, the family returned to Portugal and opened the new FRANCO OCULISTA space on Avenida da Liberdade.

    How do Franco Oculista describe their mission?

    “Through individualized and segmented service, we seek to respond to the needs of each client. We combine our knowledge with the most sophisticated technical equipment and choose quality and reliable brands. We prioritize the evolution of our services and, for this reason, we work daily to satisfy and retain our customers with the utmost professionalism.”

    Clara Pereira is one of the optometrists at Franco Oculista and has been an optometrist for nearly two decades. Based in a private clinic in Portugal, she brings years of experience and calm confidence to her consultations. We talked with her to learn how her clinical practice has evolved, particularly since integrating OCT and, more recently, Altris AI – AI for Decision Support with OCT.

    Altris AI: Clara, can you tell us a bit about your daily work?

    Clara: “Of course. I’ve been working as an optometrist for 19 years now. My practice is quite comprehensive—I assess refractive status, binocular vision, check the anterior segment with a slit lamp, measure intraocular pressure, and always examine the fundus.

    Clara: “In Portugal, we face limitations. We’re not allowed to prescribe medication or perform cycloplegia, so imaging becomes crucial. I rely heavily on fundus photography and OCT to guide referrals and detect early pathology.”

    Altris AI: How central is OCT diagnostics to your workflow?
    Clara: “OCT is substantial. I perform an OCT exam on nearly every patient, on average, eight OCT exams per day. It’s an essential part of how I gather information. With just one scan, I can learn so much about eye health.”

    Altris AI: What kind of conditions do you encounter most frequently?
    Clara: “The most common diagnosis is epiretinal membrane—fibrosis. But I also manage patients with macular degeneration and other retinal pathologies. Having the right tools is key.”

    Altris AI: And what OCT features do you use the most?
    Clara: “I regularly use the Retina, Glaucoma, and Macula maps. But if I had to choose one, the Retina Map gives me the most complete picture. It’s become my go-to.”

    Altris AI: You’ve recently started using Altris AI. What has that experience been like?
    Clara: “At first, I didn’t know much about it. But when Optometron introduced Altris AI to me—a company I trust—I didn’t hesitate. And I’m glad I didn’t. From the beginning, it felt like a natural extension of my clinical reasoning.

    Clara: “Altris AI gives me an extra layer of certainty. It helps me extract more from the OCT images. I usually interpret the scan myself first, and then I run it through the platform. That way, I validate my thinking while also learning something new.”

    Altris AI: Have any standout cases where Altris AI made a difference?

    Clara: “Yes. I’ve had a few. One was a case of advanced macular degeneration, in which the AI visualization really helped me explain the condition to the patient. Another was using anterior segment maps for fitting scleral lenses—Altris was incredibly useful there, too. I do a lot of specialty lens fittings, so that was a big advantage.”

    Altris AI: Would you recommend Altris AI to your colleagues?

    Clara: “I would recommend Altris AI to my colleagues. For me, it’s about more than just the diagnosis. It’s about feeling confident that I’m seeing everything clearly and giving my patients the best care possible. Altris AI helps me do exactly that.”

    Why This Matters: Altris AI in Real Practice

    Clara’s story reflects the real value of AI in optometry—not as a replacement for clinical judgment, but as a powerful companion. With every OCT scan, she strengthens her expertise, improves diagnostic accuracy, and gives her patients the reassurance they deserve.

    Whether identifying early signs of fibrosis, supporting complex scleral lens fittings, or acting as a second opinion, Altris AI seamlessly fits into the modern optometrist’s workflow, making every scan more meaningful.

    AI for Decision Support with OCT: Transforming Retinal Diagnostics

    Artificial Intelligence (AI) is revolutionizing the field of ophthalmology, particularly through its integration with Optical Coherence Tomography (OCT). OCT is a non-invasive imaging technique that captures high-resolution cross-sectional images of the retina, enabling early detection and monitoring of various ocular conditions. However, interpreting these scans requires time, expertise, and consistency—factors that AI-based decision support systems are uniquely positioned to enhance.

    Altris AI (AI for OCT decision support platform) analyzes thousands of data points across B-scans, automatically detecting retinal pathologies, quantifying biomarkers, and identifying patterns that may be subtle or overlooked by the human eye. By providing objective, standardized assessments, Altris AI reduces diagnostic variability and improves clinical accuracy, especially in busy or high-volume practices.

    For optometrists and ophthalmologists, AI acts as a second opinion, flagging early signs of diseases such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma. It streamlines workflows by highlighting areas of concern, prioritizing cases that require urgent attention, and offering visual explanations that are easy to communicate to patients.

    Moreover, Altris AI enableS longitudinal tracking of pathology progression. By comparing OCT scans over time ( even from various OCT devices), clinicians can monitor subtle changes in drusen volume, retinal thickness, supporting timely clinical decisions and tailored treatment strategies. The integration of AI into OCT interpretation not only enhances diagnostic confidence but also supports evidence-based care, early intervention, and improved patient outcomes. As AI continues to evolve, it will play a vital role in advancing precision medicine in ophthalmology, empowering eye care professionals with tools that are fast, reliable, and scalable.

    In essence, AI for OCT decision support is not replacing clinical expertise; it is augmenting it, elevating the standard of care through speed, accuracy, and actionable insights.

  • Best AI for OCT: 10 Essential Features Your Platform Must Have 

    best AI for OCT
    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    8 min.

    Best AI for OCT: 10 Essential Features Your Platform Must Have 

    So you’ve decided to trial AI for OCT analysis and wondering how to choose among all the available platforms. To save you some time, we’ve collected 10 most essential criteria according to which you can assess all existing AI platforms. Using this criteria you will be able to make an informed and rational choice.

    As an ophthalmologist, I am interested in finding innovative and modern approaches that could help me to enhance the workflow and improve patient outcome as a result.Analyzing various platforms, I realized that these 10 criteria are crucial for the right choice.

    1. Regulatory Compliance and Clinical Validation

    In healthcare, safety is always first. Regulatory approval and clinical validation are essential for AI-powered platforms for OCT scan analysis.

    The best AI OCT platforms should meet regulatory standards set by authorities such as the FDA, HIPAA, CE, and ISO. 

    Adhering to regulatory guidelines enhances credibility and fosters trust among healthcare professionals. Check if the AI for OCT analysis tool has all these certificates in place and if they are valid.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

     

    2.Wide range of biomarkers and pathologies detected

    Some AI for OCT platforms concentrate on certain pathologies, like  Age-Related Macular Degeneration (AMD) or Diabetic Retinopathy, because of the prevalence of these conditions among the population. It mostly means that eye care specialists must know in advance that they are dealing with the AMD patient to find the proof of AMD on the OCT.

    The best AI for OCT tools should have a wide variety of biomarkers and pathologies, including rare ones that cannot be seen daily in clinical practice, such as central retinal vein and artery occlusions, vitelliform dystrophy, macular telangiectasia and others. Altris AI, the leader of OCT for AI analysis, detects 74 biomarkers and pathologies as of today. 

    best AI for OCT

    3.Cloud-Based Data Management and Accessibility

    To ensure seamless integration into clinical workflows, the AI OCT platform should offer cloud-based data management and accessibility. Cloud storage allows for easy retrieval of patient records, remote consultations, and multi-location access. Secure cloud computing also enhances collaboration between ophthalmologists, optometrists, and researchers by enabling data sharing while maintaining compliance with data privacy regulations such as HIPAA and GDPR. 

    Many clinics have strict policies regarding patient data storage as well: it is crucial that the data is stored on the servers in the region of operation. If the clinic is in EU, the data should be stored in the EU.

    4.Real-world usage by eye care specialists

    When choosing the best AI for OCT analysis, real-world usage by eye care specialists is the most critical factor. Advanced algorithms and high accuracy metrics mean little if the AI is not seamlessly integrated into clinical workflows and actively used by optometrists and ophthalmologists. There are thousands of research models available, but when it comes to the implementation, most of them are not available to ECPs.

    Eye care professionals are not IT specialists. They require AI that is intuitive, fast, and reliable. If a system disrupts their workflow, generates excessive false alerts, or lacks clear explanations for its findings, adoption rates will be low—even if the technology itself is powerful. The best AI solutions are those that specialists trust and rely on daily to enhance diagnostic accuracy, streamline patient management, and support decision-making.

    Moreover, real usage generates valuable feedback that continuously improves the AI. Systems actively used in clinical settings undergo rapid validation, refinement, and adaptation to diverse patient populations. This real-world data is far more meaningful than isolated test results in controlled environments.

    5. Customizable Reporting and Visualization Tools

    Reports are the result of the whole AI for OCT scan analysis that is why customizable and comprehensive reports are a must.

    A high-quality AI OCT platform must offer customizable reporting and visualization tools. Clinicians should be able to adjust parameters, select specific data points, and generate detailed reports tailored to individual patient needs.

    Heatmaps, 3D reconstructions, and trend analysis graphs should be available to help visualize disease progression. These tools improve the interpretability of AI-generated insights and facilitate patient education.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

     

    6.AI for Early Glaucoma Detection

    Glaucoma is a leading cause of irreversible blindness, and since OCT is widely used to assess the retinal nerve fiber layer (RNFL), Ganglion Cell Complex ( GCC), optic nerve head (ONH), AI can significantly enhance early detection and risk assessment.

    Therefore, the best AI for OCT analysis tools have an AI for early glaucoma detection module available to assess the risk of glaucoma especially at the early stage. Moreover, tracking the progression of glaucoma with the help of AI should also be available for eye care specialists.  

    Clear and bright notifications about glaucoma risk are also vital for making AI glaucoma modules easy to use.  AI can provide proactive insights that enable early intervention and personalized treatment plans

    AI to detect glaucoma

    7.User – Friendly Interface and Intuitive Workflow Integration

    A well-designed AI OCT platform should feature a user-friendly interface that integrates seamlessly into existing clinical workflows. 

    It means that even non-tech-savvy eye care specialists should be able to navigate it effortlessly. 

    The interface should be intuitive, reducing the learning curve for healthcare providers. Features such as automated scan interpretation, voice command functionality, and guided step-by-step analysis can enhance usability and efficiency.

    8.Integration with Electronic Health Records (EHRs)

    For a seamless clinical experience, the AI OCT platform should integrate with existing electronic health record (EHR) systems. Automated data synchronization between AI analysis and patient records enhances workflow efficiency and reduces administrative burden. This feature enables real-time updates, streamlined documentation, and easy access to past diagnostic reports.

    9. Universal AI solutions compatible with all OCT devices

    Uf you want to use AI to analyze OCT, this AI should be trained on data received from various OCT devices and therefore should be applicable with various OCT devices. A vendor-neutral AI tool for OCT analysis provides unmatched advantages over proprietary solutions tied to specific hardware. By working seamlessly with multiple OCT devices, it eliminates the need for costly equipment upgrades and ensures broader accessibility across clinics and hospitals.

    This approach also fosters greater innovation, allowing AI models to continuously improve based on diverse datasets rather than being limited to a single manufacturer’s ecosystem. Vendor-neutral solutions integrate effortlessly into existing workflows, reducing training time and boosting efficiency. Clinicians benefit from unbiased, adaptable technology that prioritizes patient outcomes rather than locking users into restrictive ecosystems.

    10. Cost-Effectiveness and Accessibility

    To maximize its impact, an AI-powered OCT platform should be cost-effective and accessible to a wide range of healthcare providers. Affordable pricing models, including subscription-based or pay-per-use plans, can make AI technology available to smaller clinics and developing regions. Accessibility ensures that AI-driven OCT analysis benefits as many patients as possible, improving global eye health outcomes.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

    Conclusion

    What is the best  AI for OCT scan analysis? The best AI for OCT must be a comprehensive, intelligent, and adaptable platform that enhances diagnostic accuracy, streamlines clinical workflows, and supports proactive eye care. Key features such as high-accuracy automated analysis, multi-modal imaging integration, real-time decision support, cloud-based data management, interoperability, and explainable AI decision-making are crucial for an effective OCT AI system. By incorporating these attributes, AI-driven OCT platforms can revolutionize ophthalmology, enabling early disease detection, personalized treatment planning, and improved patient outcomes. As AI technology continues to advance, its integration with OCT will play an increasingly vital role in shaping the future of eye care.

     

  • Future of Ophthalmology: 2025 Top Trends

    future of ophthalmology
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    13.03.2025
    12 min read

    Future of Ophthalmology: 2025 Top Trends

    In a recent survey conducted by our team, we asked eye care specialists to identify the most transformative trends in ophthalmology by 2025. The results highlighted several key areas, with artificial intelligence (AI) emerging as the clear frontrunner, cited by 78% of respondents.

    future of Ophthalmology

    However, the survey also underscored the significant impact of optogenetics, novel AMD/GA therapies, and the continuing evolution of anti-VEGF treatments. This article will explore the practical implications of these advancements, providing an overview of how they are poised to reshape diagnosis, treatment, research, and, ultimately, patient outcomes in ophthalmology.

    In this article, we will also discuss Oculomics, a very promising field that is gaining momentum.

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT analysis

    Demo Account Get brochure

    Top AI Technology for Detecting Eye-related Health Risks 2025

    Building upon the survey’s findings, we begin with the most prevalent trend: top AI technology for detecting eye-related health risks in 2025

    future of opthalmology

    AI in Clinical Eye Care Practice

    With the increasing prevalence of conditions like diabetic retinopathy and age-related macular degeneration, there is a growing need for efficient and accurate screening tools. And AI is already valuable for eye-care screening: algorithms can analyze retinal images and OCT scans to identify signs of these diseases, enabling early detection and timely intervention.

    future of ophthalmology

    Source

    AI-powered screening tools can also help identify rare inherited retinal dystrophies, such as Vitelliform dystrophy and Macular telangiectasia type 2. These conditions can be challenging to diagnose, but AI algorithms can analyze retinal images to detect subtle signs that human observers may miss.

    AI also starts to play a crucial role in glaucoma management. Early detection of glaucoma demands exceptional precision, as the early signs are often subtle and difficult to detect. Another significant challenge in glaucoma screening is the high rate of false positive referrals, which can lead to unnecessary appointments in secondary care and cause anxiety for patients, yet delayed or missed detection of glaucoma results in irreversible vision loss for millions of people worldwide. So, automated AI-powered glaucoma analysis can offer transformative potential to improve patient outcomes.

    One example of promising AI technology is Altris AI, artificial intelligence for OCT scan analysis, which has introduced its Advanced Optic Disc (OD) Analysis that provides a comprehensive picture of the optic disc’s structural damage, allowing detailed glaucoma assessment for treatment choice and monitoring.

    AI for Glaucoma Detection

    This OD module evaluates optic disc parameters using OCT, providing personalized assessments by accounting for individual disc sizes and angle of rim absence. Such a tailored approach eliminates reliance on normative databases, making evaluations more accurate and patient-specific.

    Furthermore, it enables cross-evaluation across different OCT systems, allowing practitioners to analyze macula and optic disc pathology, even when data originates from multiple OCT devices. Key parameters evaluated by Altris AI’s Optic Disc Analysis include disc area, cup area, cup volume, minimal and maximum cup depth, cup/disc area ratio, rim absence angle, and disc damage likelihood scale (DDLS).

    future of ophthalmology

     

    AI for Clinical Trials and Research

    AI is revolutionizing clinical trials and research in ophthalmology. One such key application of AI is biomarker discovery and analysis. Algorithms can analyze large datasets of medical images, such as OCT scans, to identify and quantify biomarkers for various eye diseases. These biomarkers can be used to assess disease progression, monitor treatment response, and predict clinical outcomes.

    AI is also being used to improve the efficiency and effectiveness of clinical trials. By automating the process of identifying eligible patients for clinical trials, AI can help researchers recruit participants more quickly and ensure that trials include appropriate patient populations, accelerating the development of new treatments.

    future of ophthalmology

    Algorithms can analyze real-world data (RWD) collected from electronic health records and other sources to generate real-world evidence (RWE). RWE provides valuable insights into disease progression, treatment patterns, and long-term outcomes in everyday clinical settings, complementing the findings of traditional randomized controlled trials.

    Oculomics

    Integrating digitized big data and computational power in multimodal imaging techniques has presented a unique opportunity to characterize macroscopic and microscopic ophthalmic features associated with health and disease, a field known as oculomics. To date, early detection of dementia and prognostic evaluation of cerebrovascular disease based on oculomics has been realized. Exploiting ophthalmic imaging in this way provides insights beyond traditional ocular observations.

    future of ophthalmology

    For example, the NeurEYE research program, led by the University of Edinburgh, is using AI to analyze millions of anonymized eye scans to identify biomarkers for Alzheimer’s disease and other neurodegenerative conditions. This research can potentially revolutionize early detection and intervention for these devastating diseases.

    Another effort spearheaded by researchers from Penn Medicine, Penn Engineering is exploring the use of AI to analyze retinal images for biomarkers indicative of cardiovascular risk. AI systems are being trained on fundus photography to detect crucial indicators, such as elevated HbA1c levels, a hallmark of high blood sugar, and a significant risk factor for both diabetes and cardiovascular diseases.

    future of ophthalmology

    Source

    AI analysis of retinal characteristics, such as retinal thinning, vascularity reduction, corneal nerve fiber damage, and eye movement, has shown promise in predicting Neurodegenerative diseases. Specifically, decreases in retinal vascular fractal dimension and vascular density have been identified as potential biomarkers for early cognitive impairment, while reductions in the retinal arteriole-to-venular ratio correlate with later stages.

    Moving from AI, we now turn to another significant trend identified in our survey:

    Optogenetics

    Optogenetics represents a significant leap forward in ophthalmic therapeutics, offering a potential solution for vision restoration in patients with advanced retinal degenerative diseases, where traditional gene therapy often falls short. While gene replacement therapies are constrained by the need for viable target cells and the complexity of multi-gene disorders like retinitis pigmentosa (RP), optogenetics offers a broader approach.

    future of ophthalmology

    This technique aims to circumvent the loss of photoreceptors by introducing light-sensitive proteins, known as opsins, into the surviving inner retinal cells and optic nerve, restoring visual function through light modulation. This method is particularly advantageous as it is agnostic to the specific genetic cause of retinal degeneration.

    By delivering opsin genes to retinal neurons, the technology enables the precise manipulation of cellular activity, essentially transforming these cells into new light-sensing units. This approach can bypass the damaged photoreceptor layer, transmitting visual signals directly to the brain.

    Several companies are pioneering advancements in this field. RhyGaze, for example, has secured substantial funding to accelerate the development of its lead clinical candidate, a novel gene therapy designed for optogenetic vision restoration. Their efforts encompass preclinical testing, including pharmacology and toxicology studies, an observational study to define clinical endpoints, and a first-in-human trial to assess safety and efficacy. The success of RhyGaze’s research could pave the way for widespread clinical applications, significantly impacting the treatment of blindness globally.

    future of ophthalmology

    Source

    Nanoscope Therapeutics is also making significant strides with its MCO-010 therapy. This investigational treatment, administered through a single intravitreal injection, delivers the Multi-Characteristic Opsin (MCO) gene, enabling remaining retinal cells to function as new light-sensing cells. Unlike earlier optogenetic therapies that required bulky external devices, MCO-010 eliminates the need for high-tech goggles, simplifying the treatment process and enhancing patient convenience. The ability to restore light sensitivity without external devices represents a major advancement, potentially broadening the applicability of optogenetics to a wider patient population.

    future of ophthalmology

    Source

    Another critical area of innovation highlighted in our survey is the advancement of treatments for AMD and GA.

    New AMD/GA Treatment

    Age-related macular degeneration (AMD) and geographic atrophy (GA) represent a significant challenge in ophthalmology, demanding innovative therapeutic strategies beyond the established anti-VEGF paradigm.

    future of ophthalmology

    Source

    Gene Correction

    Gene editing is emerging as a powerful tool in the fight against AMD and GA, potentially correcting the underlying genetic errors that contribute to these diseases. Essentially, it allows us to make precise changes to a patient’s DNA.

    Traditional gene editing techniques often rely on creating ‘double-strand breaks’ (DSBs) in the DNA at specific target sites, which are like precise cuts in the DNA strand. These cuts are made using specialized enzymes, like CRISPR-Cas9, which act as molecular scissors. While effective, these methods can sometimes introduce unwanted changes at the cut site, such as small insertions or deletions.

    After a DSB is made, the cell’s natural repair mechanisms kick in. There are two main pathways:

    • Non-Homologous End Joining (NHEJ): This is the cell’s quick-fix method. It essentially glues the broken ends back together. However, this process can sometimes introduce errors, leading to small insertions or deletions that can disrupt the gene’s function.
    • Homology-Directed Repair (HDR): This is a more precise repair method. It uses a ‘donor’ DNA template to guide the repair process, ensuring accuracy. However, HDR is more complex and less efficient, especially in non-dividing cells.

    To overcome these limitations of traditional gene editing, researchers have developed more precise techniques:

    • Base Editing: This technique allows scientists to change a single ‘letter’ in the DNA code without creating DSBs.
    • Prime Editing: This advanced technique builds upon CRISPR-Cas9, allowing for a wider range of precise DNA changes. It can correct most disease-causing mutations with enhanced safety and accuracy.
    • CASTs (CRISPR-associated transposases): This method enables larger DNA modifications without creating DSBs, offering a safer approach to genetic correction.

    Why does this matter for AMD and GA? These advancements in gene editing are crucial for addressing the genetic roots of these pathologies. We can potentially develop more effective and targeted therapies by precisely correcting the faulty genes that contribute to these diseases. The technologies are still being researched, but they hold great promise for the future of ophthalmology.

    Cell Reprogramming

    Cell reprogramming offers a novel approach to regenerative medicine, with the potential to replace damaged retinal cells. This technique involves changing a cell’s fate, either in vitro or in vivo. In vitro reprogramming involves extracting cells, reprogramming them in a laboratory, and then transplanting them back into the patient. In vivo reprogramming, which directly reprograms cells within the body, holds particular promise for retinal diseases. This approach has succeeded in preclinical studies, demonstrating the potential to restore vision in conditions like congenital blindness.

    future of ophthalmology

    Vectors and Delivery Methods

    The success of gene therapy relies on efficiently delivering therapeutic genes to target retinal cells. Vectors are essentially delivery vehicles, designed to carry therapeutic genes into cells. These vectors can be broadly classified into two categories: viral and non-viral. Vectors, both viral and non-viral, are crucial for this process.

    Viral vectors are modified viruses that have been engineered to remove their harmful components and replace them with therapeutic genes. They are highly efficient at delivering genes into cells, as they have evolved to do just that. Adeno-associated viruses (AAVs) are the most commonly used viral vectors in ocular gene therapy due to their safety profile and cell-specificity. The diversity of AAV serotypes allows for tailored gene delivery to specific retinal cell types.

    Non-viral vectors, on the other hand, are synthetic systems that don’t rely on viruses. They can be made from lipids, polymers, or even DNA itself. While they may be less efficient than viral vectors, they offer safety and ease of production advantages.

    Advances in vector design, whether viral or non-viral, are focused on enhancing gene expression, cell-specificity, and carrying capacity.

    Now, let’s examine the ongoing evolution of anti-VEGF treatments, a cornerstone of modern retinal care.

    New Anti-VEGF drugs

    The landscape of ophthalmology has undergone a dramatic transformation since the early 1970s when Judah Folkman first proposed the concept of tumor angiogenesis. His idea sparked research that ultimately led to the identification of vascular endothelial growth factor (VEGF) in 1989 and the development of anti-VEGF therapies, revolutionizing the treatment of neovascular eye diseases, dramatically improving outcomes for patients with wet AMD, diabetic retinopathy, and retinal vein occlusions.

    Population-based studies have shown a substantial reduction (up to 47%) in blindness due to wet AMD since the introduction of anti-VEGF therapies. However, significant gaps remain despite this progress, especially regarding treatment durability. Anti-VEGF drugs require frequent intravitreal injections, which can be difficult for patients due to time commitments, financial costs, and potential discomfort. Although newer agents have extended treatment intervals, patient adherence and undertreatment challenges persist in real-world settings. Innovative approaches are being investigated to address these unmet needs to increase drug durability and reduce the treatment burden.

    Tyrosine Kinase Inhibitors

    One approach to increasing treatment durability is using tyrosine kinase inhibitors (TKIs). TKIs are small-molecule drugs that act as pan-VEGF blockers by binding directly to VEGF receptor sites inside cells, offering a different action mechanism than traditional anti-VEGF drugs that target circulating VEGF proteins.

    Currently, TKIs are being investigated as maintenance therapy, primarily in conjunction with sustained-release delivery systems. Two promising TKIs for retinal diseases are axitinib and vorolanib. In a bioresorbable hydrogel implant, Axitinib is being studied for neovascular AMD and diabetic retinopathy. Vorolanib, in a sustained-release delivery system, is also being investigated for neovascular AMD. These TKIs offer the potential for less frequent dosing, reducing the treatment burden for patients.

    Port Delivery System

    The Port Delivery System (PDS) is a surgically implanted, refillable device that provides continuous ranibizumab delivery for up to 6 months. While it’s FDA-approved for neovascular AMD, it’s also being investigated for other retinal diseases, such as diabetic macular edema and diabetic retinopathy.

    future of ophthalmologySource

    Although the PDS faced a voluntary recall due to issues with septum dislodgment, it has returned to the market with modifications. The PDS offers the potential for significantly reduced treatment frequency for a subset of patients. However, challenges remain, including the need for meticulous surgical implantation and the risk of endophthalmitis.

    Nanotechnology

    Nanotechnology offers promising solutions to overcome limitations of current ocular drug delivery. The unique structure of the eye, with its various barriers, poses challenges for drug delivery. Topical administration often fails to achieve therapeutic concentrations, while frequent intravitreal injections carry risks. Nanotechnology can improve drug solubility, permeation, and bioavailability through nanoparticles, potentially extending drug residence time and reducing the need for frequent injections. Several nanoparticle systems, lipid and polymeric, are being studied for ocular drug delivery, offering hope for more effective and less invasive treatments.

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT analysis

    Demo Account Get brochure

    Summing up

    The advancements discussed in this article, encompassing AI, optogenetics, novel AMD/GA therapies, and refined anti-VEGF treatments, collectively signal a transformative era for ophthalmology. As highlighted by the survey results, AI probably encompasses most of the changes by redefining diagnostic and clinical workflows through its capacity for image analysis, biomarker identification, and personalized patient management.

    Optogenetics offers a distinct pathway to vision restoration, bypassing limitations of traditional gene therapy. The progress in AMD/GA treatments, particularly gene editing and cell reprogramming, presents opportunities for targeted interventions. Finally, the evolution of anti-VEGF therapies, with innovations in drug delivery and sustained-release mechanisms, addresses persistent challenges in managing neovascular diseases.

    These developments, driven by technological innovation and clinical research, promise to enhance patient outcomes and reshape the future of ophthalmic care.

Recently Posted

  • Normative database OCT

    Normative Database in OCT: Limitations and AI Solutions

    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    06.09.2023
    6 min read

    Normative Database in OCT: Limitations and AI Solutions

    The first normative database for OCT was created in the early 2000s and were based on small studies of mostly white patients. However, as OCT technology has evolved, so too have the normative databases. Recent databases are larger and more diverse, reflecting the increasing ethnic and racial diversity of the population.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT

    Make your eye care business technological

    Demo Account Get brochure

    Nowadays, eye care specialists use normative database to compare the characteristics of a patient to a population-wide norm. This allows them to quickly and easily assess whether a patient’s retinal dimensions fall within normal limits. According to our survey, 79% of eye care specialists rely on the normative databases for OCT verdict with every patient.

    Normative database OCT

    However, despite the fact that normative databases are very widespread among specialists worldwide, they are not perfect. They can be affected by factors such as age, gender, axial length, and refractive error.

    They can be influenced by low image quality due to different eye pathologies. It is essential to be aware of these limitations when interpreting normative data OCT parameters. That is why, in this article, we will discuss the benefits of the collaboration between AI decision-making tools and normative databases to improve patient outcomes.

    What is a normative database for OCT

    Before diving into the subject of the benefits and limitations of normative databases, we would like to remind you what a normative database is. From the moment of its invention, the OCT exam has rapidly gained widespread adoption and has become indispensable in the eye care practice. Critical to this success has been the ability of software to automatically produce important measurements, such as the thickness of the peripapillary retinal nerve fiber layer (RNFL) in tracking glaucoma progression or the total retinal thickness in the assessment of macular diseases. 

    In order to accurately interpret OCT scans, normative databases were created. These databases are now built into almost all commercial OCT devices, allowing eye care specialists to view colored reports and progression maps that assist in the rapid recognition and tracking of pathology.

    Summing up, a normative database for OCT is a set of data that provides references for OCT thickness measurements in a healthy population. These databases are used to compare the OCT measurements of your patient to a population-wide norm. 

    Here are some of the OCT parameters that are commonly measured and compared to normative databases:

    • Retinal nerve fiber layer (RNFL) thickness: the RNFL is a retinal layer that is measured around the optic nerve. This measurement is important for diagnosing optic nerve atrophy.
    • Macular thickness: the macula is responsible for sharp central vision.
    • Ganglion cell complex thickness: the ganglion cell complex is a group of cells in the retina that are responsible for transmitting visual information to the brain.
    • Cup-to-disc ratio, neuroretinal rim, and other optic nerve parameters: are very important for diagnosing glaucoma and other optic nerve pathologies

    These are just a few of the OCT parameters that are commonly measured in normative databases. The specific parameters that are measured can vary depending on the type of OCT device and the clinical application. 

    In addition, different OCT devices can have different measurement capabilities and resolutions. For example, a device that uses time-domain OCT (TD-OCT) technology may have a lower resolution than a device that uses spectral-domain or swept-source OCT (SD or SS-OCT) technology. This means that the normative database for a TD-OCT device may not be as accurate as the normative database for an SD or SS-OCT device.

    What is more, the normative database for a particular device may be based on a specific population of patients. What are the benefits and limitations of normative databases?

    Now that we have highlighted different aspects of the normative database definition let us discuss the benefits and limitations of this tool. Normative databases can sometimes be very helpful for eye care specialists in diagnosis, decision-making, and creating a treatment strategy for eye diseases such as glaucoma and macular degeneration.

    • The measurement provided by the normative database can be used as a baseline for tracking a patient’s response to medication or other treatment. Eye care specialists can track changes between a few visits and determine the impact on the patient.
    • Normative databases show deviations from the norm, which may be a reason for a more comprehensive examination.
    • Eye care specialists can also use normative databases to compare the results of different OCT devices. This can help to ensure that they are using the most accurate device for their patients.

    There are still challenges that must be overcome to develop normative databases sufficient for use in clinical trials. That is why current normative databases also have a lot of limitations.

    Does not detect pathology

    The normative database works only with the thickness of the retina and does not detect what is inside the retina. Therefore, it cannot detect all pathologies where there is no change in retinal thickness. In the early stages, these are absolutely all diseases. We can see deviations from the normative base only when the disease progresses to a later and more severe stage when the retinal thickness decreases or increases.

    Limited diversity

    Normative databases can be limited by factors like age, gender, and ethnicity of the population used to create them. This can result in reduced accuracy for patients who are not well-represented in the database.

    Population variation

    Even healthy patients can have some anatomical variations that fall within the range of normal. These variations may be falsely flagged as abnormalities when compared to the database.

    How Altris AI platform can complement the information provided by the normative database

    Normative databases in OCT play a crucial role in aiding diagnosis and treatment planning, but they also have limitations related to representation, disease progression, and data quality. Eye care specialists need to interpret the results in the context of the patient’s individual characteristics and other clinical information, using additional tools for scan interpretations.

    Sometimes, low-quality OCT scans can be inaccurately interpreted by the eye care specialist, and the normative database can showcase inaccurate measurements. Altris AI platform detects low-quality scans automatically and warns about the possibility of inaccurate results. In addition, the platform automates the detection of 70+ pathologies and pathological signs. Once the user uploads the scan, they can see visualized and highlighted pathological areas and pathology classification that the algorithm has detected. The user can also calculate the area and volume of detected biomarkers.

    Normative database OCT

    Artificial intelligence-based tools for OCT interpretation used along with normative databases can play a crucial role in clinical eye care. Altris AI, for example, can provide eye care specialists with additional and more precise information about separate retinal layer thickness. The system analyzes the thickness of each retina layer or several layers combined.

    Normative database OCT

    While normative databases provide information only about the thickness, AI tools equipped with deep learning models can detect pathological signs in OCT scans that might be missed by the normative database or the human eye, enhancing diagnostic accuracy. Altris AI algorithm classifies the OCT scans based on the degree of pathology found. It can distinguish green concern, which indicates normal retina, yellow – moderate with slight deviations, and red concern, which means high severity level.

    Normative database OCT

    Summing up

    Despite their limitations, normative databases are an essential tool for the clinical use of OCT. They provide a valuable reference point for assessing patients and can help to identify some diseases. However, the normative database measures only the thickness, which is not enough to accurately diagnose the patient and create a treatment plan.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT

    Make your eye care business technological

    Demo Account Get brochure

    That is why incorporating AI into OCT interpretation streamlines the decision-making process. By automating the initial analysis of OCT scans, specialists can focus their attention on more complex cases, making the best use of their skills and experience. Moreover, embracing AI technologies empowers eye care specialists to personalize patient care with greater precision.

  • AI blindness prevention

    AI Blindness Prevention: how AI can combat vision loss?

    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    07.08.2023
    9 min read

    AI for Eye Diseases: how AI can combat vision loss?

    The total number of people with near or distant vision impairment reaches 2.2 billion worldwide.

    Of these, 43 million people are blind, and 295 million are suffering from moderate to severe visual impairment. Although the numbers are constantly changing as new research is conducted, the global burden of blindness and visual impairment remains a significant problem of humanity in the fight against which specialists combine their forces with AI technologies.

    AI blindness prevention

    AI blindness prevention tools are being actively developed to transform the landscape of vision care in many ways. Eye care specialists use AI systems for screening and detecting diseases that lead to vision loss. AI-powered smart monitors assist specialists in finding proper contact lenses and glasses. In addition, many researches are held with the help of AI algorithms, as they are able to process vast amounts of data.

    In this article, we will discuss different applications of AI in blindness prevention, specifically how artificial intelligence tools can empower eye care specialists and extend beyond the clinical setting. 

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT scan analysis

    Make your eye care business technological

    Demo Account Get brochure

    How to Prevent Blindness: Conditions and Risk Factors

    Before talking about the developments in the AI sector toward blindness prevention, we would like to discuss the most common causes and risk factors of this impairment. Many health and lifestyle factors can influence the risk of vision loss. Smoking, excessive alcohol consumption, sun exposure, and poor nutrition can contribute to diseases that lead to vision loss. 

    In addition, there are many conditions that can lead to blindness if left with no proper treatment, among which are the following. 

    Age-related eye diseases

    The global population is aging rapidly. The number of people aged 65 and over is projected to triple from 1 billion in 2020 to 2.1 billion in 2050. Considering this fact, age-related eye diseases have become a prominent cause of blindness. Such diseases as age-related macular degeneration (AMD), cataract, and glaucoma are more prevalent in older patients, and if left untreated, they can lead to fast and significant vision loss. Regular eye check-ups and timely interventions are crucial in managing these diseases and preventing severe visual impairment.

    AI blindness prevention

    Besides AMD, there are a lot of age-related conditions which can be a red flag when examining the patient. Among these are macular holes, mactel, and vascular diseases, for example,  central retinal vein occlusion (CRVO) and central retinal artery occlusion (CRAO). Detecting even one of these pathological conditions in the early stages of their development is crucial for preventing vision loss. 

    However, many eye care specialists sometimes don’t have enough resources to dedicate more time to analyzing patients’ images. Our recent survey detected that among more than 300 participating optometrists, 40% of them have more than 10 OCT exams per day. Meanwhile, 35% of eye care specialists have 5-10 OCT examinations per day. The greater the number of patients per day, the greater the likelihood that eye care specialists may miss some minor, rare, or early conditions.

    AI blindness prevention

    Fortunately, nowadays, there are a lot of ways to empower the clinical workflow, and AI blindness prevention tools are gaining popularity. Artificial intelligence systems like Altris AI can analyze retinal images and other diagnostic data to detect early signs of age-related eye diseases. Altris AI platform, for example, can detect 70+ pathologies and pathological signs, including the ones, that refer to age-related diseases.

    AI blindness prevention

    Altris AI platform allows eye care specialists to rely on its disease classification when diagnosing a patient. It detects all the most common age-related pathologies, such as AMD, mactel, and vascular diseases – CRVO, CRAO.

    AI blindness prevention

    Diabetes and diabetic retinopathy

    Diabetes and related conditions are also common causes of vision loss. In the United States, about 12% of all new cases of blindness are caused due to diabetes. Globally, diabetes is estimated to cause 4.8% of all blindness. In addition, the risk of blindness from diabetes increases with the duration of diabetes. People with untreated diabetes for years are 25 times more likely to be blind than people without diabetes.

    AI blindness prevention

    The complication of diabetes, called Diabetic retinopathy (DR), affects the blood vessels of the retina and can lead to impaired vision or blindness. With the rising prevalence of diabetes worldwide, DR has become a significant problem. Early detection, proper control of diabetes, and regular eye exams are essential to prevent vision loss. 

    The American diabetes association (ADA) recommends that people with diabetes have an OCT scan of their eyes every year. This is because OCT can help to detect early signs of DR with high precision. In some cases, eye care specialists may recommend more frequent OCT scans. This may be the case if the patient has advanced diabetic retinopathy or a family history of diabetic retinopathy.

    AI blindness prevention

    AI algorithms such as Altris AI can assist in detecting the pathological signs of diabetic retinopathy or diabetic macular edema. Our web platform differentiates certain pathological signs that indicate diabetes-related diseases. Among these are:

    • Intraretinal fluid
    • Subretinal fluid
    • Hard exudates
    • Hyperreflective foci
    • Epiretinal fibrosis

    Genetic and inherited conditions: AI for visually impaired

    Some patients are at a greater risk of developing visual impairment due to genetic factors or the inheritance of certain conditions. For example, retinitis pigmentosa is an inherited disease that affects the photoreceptor cells in the retina and gradually leads to night blindness and loss of peripheral vision. Genetic testing and counseling can help identify people at risk and provide early intervention.

    AI blindness prevention

    Some genetic eye conditions, such as myopia, vitelliform dystrophy, or retinoschisis, can be detected in the early stages with the help of OCT examination and artificial intelligence systems. Altris AI platform can help eye care specialists in their daily practice and make eye care more accessible, allowing specialists to perform regular eye check-ups, and provide timely treatment of genetic conditions.

    AI blindness prevention

    Current ways to prevent blindness with AI 

    As you can see, blindness risk factors encompass a wide range of conditions, pathologies, and circumstances that can significantly impact a patient’s health and increase the likelihood of severe visual impairment. Poorly managed age-related eye diseases, genetic and hereditary factors, and chronic health conditions can lead to eye-related complications, further elevating the risk of blindness.

    AI blindness prevention

    In the following paragraphs, we will describe in detail the modern ways of using artificial intelligence to detect and prevent blindness: from AI-based retinal imaging for early detection of eye diseases to personalized treatment recommendations and remote patient monitoring.

    AI for image interpretation

    AI blindness prevention

    It is important to understand that the timely detection of eye diseases is key to the effective treatment of visual impairments. However, today we have an unfortunate tendency to diagnose severe forms of disease too late. A large-scale survey by Eyewire conducted in 2021 found that about 40% of people in the USA said they had not had an eye exam in more than a year, and 10% said they had not had one in more than five years. 

    In addition, recent research by the British Journal of Ophthalmology found that 25.3% of people in Europe over the age of 60 have early signs of AMD. In the UK, about 200 people a day are affected by a severe form of AMD (wet AMD), which can cause severe blindness. 

    These studies show us that while eye care specialists around the world are trying to treat as many patients as possible, unfortunately, many patients are going blind due to delays in diagnosis. However, using advanced AI-based image analysis systems can speed up the detection of warning signs, allowing you to reach more patients.

    One of the advantages of AI for image analysis is its assistance in decision-making. Altris AI is a great example of how an image analysis system can help prevent blindness with AI. The platform allows eye care specialists to detect 74 retina pathologies and pathological signs, including risk conditions for vision loss, like AMD, Diabetic retinopathy, Vascular diseases of the retina, and others. 

    Diagnosing eye disease in children

    AI blindness prevention

    Today, one of the most important AI blindness prevention research is focused on teaching artificial intelligence algorithms to detect retinopathy in premature infants. Retinopathy of prematurity is the main cause of childhood blindness in middle-income countries. Some researches show that around 50,000 children all over the world are blind due to the disease.

    Unfortunately, experts’ forecasts show that these figures are likely to grow. Retinopathy of prematurity is becoming more and more common, especially in African countries. About 30% of children born in sub-Saharan Africa have this disease and, due to late detection and insufficient attention due to the lack of eye care specialists, can also go blind.

    An artificial intelligence model developed by an international team of scientists from the UK, Brazil, Egypt, and the US, with support from leading healthcare institutions, is able to identify children who are at risk of blindness if left untreated. The team of scientists hopes that this AI system will make access to screening and monitoring of young patients more affordable in many regions with limited eye care services and few qualified eye care specialists.

    AI monitors for eye strain control

    Another interesting application of AI to prevent blindness is eye care monitors. They are planned to be used to avoid eye strain due to prolonged computer work. Such monitors will be programmed to monitor the user’s facial expressions, blinks, and eye movements. They will also be able to assess the level of light in the room, and artificial intelligence will automatically adjust the screen brightness and image contrast.

    Since a huge number of the world’s population has switched to remote work since the pandemic and spends almost all day at the computer, such AI monitors are considered a huge help for users in preventing eye diseases that can lead to visual impairment.

    AI to determine better glasses or contact lenses

    AI blindness prevention

    In the field of developing and calculating suitable lenses, there are also a number of companies that have joined the development of AI tools. AI monitors will collect important information about the patient’s eye condition, analyze it, and prescribe suitable contact lenses or glasses. 

    In addition, these monitors will be able to analyze the patient’s medical history, including medical images, and create the most suitable treatment strategy to maximize visual acuity.

    AI for studying the human eye

    AI blindness prevention

    Today, artificial intelligence for low vision is a promising tool for studying human eye tissue and developing new tools for diagnosing and treating eye diseases, including those that lead to vision loss. Artificial intelligence tools are used to analyze OCT images of the eye to detect changes that may indicate diseases such as diabetic retinopathy, macular degeneration, and glaucoma. AI is also used to predict the development of eye diseases based on genetic or risk factors. This is expected to help doctors identify people at risk of developing eye diseases at an early stage and prevent the progression of the disease.

    Summing up

    Today AI for eye diseases is already helping eye care professionals, and some companies, like Altris AI, are already using the potential of artificial intelligence to provide early detection and diagnostic advice for eye care specialists. But it’s worth noting that AI tools are not capable of coming up with innovative solutions for blindness prevention.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT scan analysis

    Make your eye care business technological

    Demo Account Get brochure

    Only in close cooperation with eye care specialists AI blindness prevention tools can help in many ways, like early detection, providing access to medical care in underserved regions, detecting minor or rare conditions, and allowing to focus on personalized care and treatment of patients.

  • OCT eye exam

    5 Tips When Introducing the OCT Eye Exam to Patients

    AI Ophthalmology and Optometry | Altris AI Mark Braddon
    24.07.2023
    8 min read

    As optometry technology evolves, many optometrists predict that utilizing OCT eye exam in practice will be vital in maximizing patient care. That is why successfully integrating an OCT device into your optometry practice workflow is instrumental to its clinical and commercial success.

    Optometrists from different countries often have the same questions about how to successfully integrate an OCT device into an Optometrist Practice, regardless of practice size or experience level. How to make patients feel comfortable? How to explain the importance of regular OCT scans? Will patients understand what is an OCT scan of the eye? How do we avoid patients thinking we want to perform OCT eye exams just to earn more money? The process of introducing OCT to patients is complex and covers many areas. 

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT scan analysis

    Demo Account Get brochure

    If we speak to optometry practices, both those who are new to OCT and those who have had the OCT device for many years, most of them will want to improve the ROI and ensure the patients are gaining the full value of the OCT eye test. This article will show you 5 tips for successfully introducing the OCT eye exam to your patients.

    Remember why you invested in the OCT technology

    One may think that only novice optometrists tend to underestimate their work or do not feel confident about the value they give to patients. However, some experienced clinicians also avoid offering OCT eye tests because they think they are ‘overselling’ with additional fees for OCT, Optos, or other diagnostic exams. 

    That is why it is important to remember why you invested in OCT technology in the first place. In almost all cases, this is to improve the clinical standard of eye care that you offer to your patients. In fact, when I ask some optometrists if they want a member of their families to have an OCT eye exam, the answer is always ‘Yes, of course!’. So if you strongly recommend undergoing an examination to your relatives, why would you not recommend an OCT eye test for your patients?

    OCT eye exam

    Before a patient comes into the practice, one of the most important things you need to do is not undervalue your time, skills, and experience when charging for the additional time the OCT exam takes to interpret and discuss. 

    Implementing an OCT eye exam into regular practice improves clinical care and can generate a commercial benefit as well by increasing revenue through fees, patient retention, and loyalty. Moreover, word of mouth is often the most significant source of new patients for optometrists. If the patient feels you are confident in everything you do, it will make them more likely to recommend you to friends and family

    Explain the importance of OCT eye exam for early detection 

    From the first touch point, the patient should understand that your optometric practice takes its business seriously and provides additional diagnostic examinations, such as the OCT, to improve the quality of care. The first impression of your approach is very important, so it is crucial to start introducing the technology to the potential patient from the first point of contact. 

    As a rule, the beginning of a patient’s introduction to the OCT eye exam starts with several touch points. Whether they make their appointment for the eye examination through your website, mobile application, in person, or by phone, the most important thing you can do is create an integrated and comfortable patient journey.

    OCT eye exam

    Before a patient comes into the practice, you should explain the importance of the OCT device and its benefits compared to the standard examination. Even when the patient is fully acquainted with the OCT eye exam, they may still need help understanding why this particular imaging method is necessary. The ability of OCT eye exam to detect diseases in the early stages makes this technology indispensable for optometrists and patients and this is why it is such an excellent tool for diagnosing eye diseases. 

    More importantly, avoid frightening patients with stories about difficult-to-treat rare pathologies. Instead of talking about the pathology consequences, say that the OCT eye exam scan provides a clear map that helps locate areas of the eye with abnormalities or early changes.

    Understand the importance of a healthy-eye-as-a-baseline concept

    In this section, I want to discuss the concept of a healthy eye in more detail. When a patient comes to you for an examination, it is essential to use the correct narrative that the optometrist should use when discussing the results of an OCT eye exam with patients. It is important to emphasize that we are not looking for pathology but a healthy eye.

    We know that we will detect pathology in certain patients. The number of patients likely to have at least one pathology increases if you work with an older population. However, finding a healthy baseline scan is an important part of monitoring the long-term eye health of the patient.

    OCT eye exam

    Talking about baseline, make sure to emphasize how great it is to find a healthy eye in a patient. Explain that together you found a nice, healthy eye so you have the baseline to compare with the patient’s future scans. Emphasize that, hopefully, you will find a healthy eye at the next eye examination, but if anything does start to change, then with the help of an OCT eye exam, you will be able to detect these early and minor changes as you have the healthy baseline scan to compare to.

    It is necessary to develop your patient’s understanding through appropriate teaching and discussion. Giving the value of the baseline OCT eye exam to your patients is very important. Notice the difference between “We found nothing” and “We found a healthy eye”. The first statement is negative and undermines the reason for the scanning of patients for a healthy eye baseline. Meanwhile, the second statement is positive and clearly gives your patient more value as you have found what you are looking for.

    Integrate the OCT eye exam into the patient workflow

    Another one of my recommendations is to call the eye examination that includes the OCT eye exam the Advanced or Comprehensive Eye Examination. It is important to make sure all the staff members use the same terminology and your message to a patient is consistent from first contact to the end of the practice visit. The eye examination without the OCT exam can be called the ‘Standard Examination’ as we are not trying to make the ‘normal’ eye examination appear below standard, what we are trying to do is explain that the practice is invested in the latest technology to offer the most advanced (or comprehensive) examination for your patients benefit.

    OCT eye exam

    For example, when a patient books an appointment, make sure that the support staff uses the same terminology as written throughout the website, reminder letter/email, or mobile app if you have one.  

    When you review the OCT images with the patient, explain that you are going to look at the OCT images of the retina, which is part of the ‘Advanced examination’. When a patient pays at the end of the customer journey, make sure that the ‘Advanced Examination’ is mentioned again. When a patient rings up or books online for the next OCT eye exam, then they will understand what the ‘Advanced examination’  means and are more likely to select this option straight away for future examinations.

    Concentrate on giving more value to your patients

    Review the results with the patient to give them the actual value of an OCT scan. This will allow you to establish communication with the patient and improve their perception. Give them the “theatre” around the additional diagnostic testing so they understand how it applies to them and feel valued.

    OCT eye exam

    Remember that your knowledge, enthusiasm, and the extent to which the patient is involved in the process directly affect the clinical and commercial success. Dedicate time to each patient, involve them in the diagnostic process, and explain the OCT scans of their eyes on the screen.

    How can Altris AI help with introducing OCT Eye Exam

    OCT eye test

    When talking about improving the clinical standard of care your practice offers to your patients, the Altris AI platform can also improve the standard of care you offer to your patients. The platform helps to quickly determine if the eye is healthy. If pathology is detected, then Altris AI identifies the very early, rare, or minor changes that can be the start of something more severe. Altris AI detects over 70 pathologies and pathological signs. If early pathology is identified, then the Altris AI platform can help educate the patient by clearly highlighting the areas of concern and then giving you the opportunity to discuss lifestyle changes, over-the-counter medications, or supplements, which may help the patient now rather than just monitoring until it is time to refer. 

    The Altris AI platform can improve the patient’s understanding of the OCT exam and add value to the Advanced Eye Examination.

    OCT eye test

    All you need to do is to upload an OCT macula exam to the platform and Altris AI will assess the exam by severity differentiating the b-scans between high, medium, and low severity levels.  The segmentation/classification module will highlight pathological signs on the OCT scan one by one and give the classification/s of any pathology found to support you with the diagnosis. Meanwhile, in the Comparison module of the platform, you are able to compare the baseline scan with the current one. 

    Summing Up

    Remember why you invested in the OCT technology in the first place — usually, this is to improve the clinical standard of care you can offer to your patients. The improvement in clinical care can also generate a commercial benefit as well by increasing revenue through OCT exam fees, patient satisfaction, patient retention and loyalty, and an increase in recommendations of friends and family. 

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT scan analysis

    Demo Account Get brochure

    Build a patient journey in such a way that, at each stage, they know that they have received a new, exciting, and, important part for the most comprehensive examination you offer. Remember that the more skill and enthusiasm you show, the more you can interest the patient and increase the probability that they will return for their next examination with OCT.

    In addition, consider using modern AI tools to help you with decision-making. Image management systems like Altris AI can help you interpret the OCT scans faster and with more confidence. This will leave more time to add value for your patient, and integrating AI into practice can be another example of how you are investing in the latest technology to benefit your patients.

  • AI for Ophthalmic clinic, photo

    Business Case: Lux Zir and AI-powered OCT Analysis in Ophthalmic Clinic

    AI Ophthalmology and Optometry | Altris AI Altris Inc.
    11.07.2023
    2 min read

    Business Case: Lux Zir and AI-powered OCT Analysis in Ophthalmic Clinic

    The Client: Lux Zir is one of the best-known ophthalmic clinics in Ukraine which provides retina diagnostics and eye treatment services. The clinic currently employs 3 full-time eye practitioners 2 general ophthalmologists and a pediatric retina expert.

    The clinic normally sees between 15-20 per day with up to 10 OCT examinations performed.

    AI Ophthalmology and Optometry | Altris AI
    See how Altris AI works

    FDA-cleared AI for OCT

    Demo Account Get brochure

    The Problem:

    Luxzir uses Optical Coherence Tomography as one of its core diagnostic methods because of its high level of accuracy and non-invasiveness. However, the clinic needed to solve several typical problems related to OCT.

    • Some ECPs have less experience with OCT interpretation than others and this creates an inconsistent standard of care throughout the clinic.
    • Some ophthalmologists come across complex OCT scans that they are unable to interpret without the help of their more experienced colleagues.
    • It is difficult to maintain a high standard of care for diagnostics when the CMO is absent during the period of vacation or sick leave.
    • Take out wrong and start with an inaccurate diagnosis on the basis of OCT of the patients who are referred to the clinic from other eye care centers. 

    The Solution:

    Lux Zir Ophthalmic Clinic decided to implement the Altris AI platform as they understood how it can help resolve their problems. The results have been very positive with improvements with all issues above problems, and received very positive results.

    According to Marta Shchur, Chief Medical Officer at Lux Zir clinic, the implementation of the Altris AI system improved the level of OCT diagnostics inside the clinic or if to be precise:

    • OCT interpretation is now considerably faster allowing the ECPs to see 10% more patients per day.
    • OCT diagnostics has become much more efficient: supported by Altris AI, ophthalmologists now have confidence when diagnosing pathologies and pathological signs, even rare ones.
    • The quality of diagnostics is consistent regardless of the experience of the specialists.
  • Business Case: Altris AI

    Business Case: Altris AI for Jeff Sciberras Optometry

    AI Ophthalmology and Optometry | Altris AI Altris Inc.
    10.07.2023
    1 min read

    Business Case: Altris AI for Jeff Sciberras Optometry

    The Client: Canadian Optometry Clinic

    Jeff Sciberras Optometry Clinic is an established eye care facility in Mississauga, Canada. They have been recognized as the Top Choice Optometry Clinic for the past five years running in this large Canadian city.

    Dr. Jeff Sciberras is proud of his high patient satisfaction rate: 92% of those surveyed would refer a friend, colleague, or family member to this establishment.

    Dr. Sciberras aims to provide comprehensive eye care, with a desire to utilize leading technologies and the delivery of premium eye care products.

    Recent technology investments include OCT, which allows earlier diagnosis and greater in-house management capabilities.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT Analysis

    Make your eye care business technological

    Demo Account Get brochure

     

    The Challenge: The optometry clinic has just purchased a brand new Optopol Revo OCT equipment and the support was needed in OCT scan interpretation. OCT is one of the most accurate methods of retina diagnostics  however, the interpretation of OCT scans can be challenging and time-consuming,  for both doctor and patient.

    The Result:

    Dr. Sciberras has been extremely satisfied with the support that the Altris AI platform provides:

    • Increased confidence when working with the new OCT device · more profound analysis of OCT scans
    • More adequate referral of complex cases.
    • Scan summaries for the patient.
    • Earning patient confidence and trust: The image of the innovative optometry center is enhanced to their patients and families.
    • The AI Segmentation/Classification Module is invaluable for the optometry center as this module helps in the identification of 70+ pathologies and pathological signs.

    The introduction of OCT with Altris AI has transformed my practice literally overnight. The integration was seamless and Altris customer support has been outstanding.

     

    Overall, Dr. Sciberras has been impressed with the experience and support Altris AI provides and is happy to have chosen to partner with them for his leading eye care center.

  • DICOM file format

    DICOM Format: Benefits of Managing DICOM images

    AI Ophthalmology and Optometry | Altris AI Mark Braddon
    31.05.2023
    6 min read

    DICOM Format: Benefits of Managing DICOM images

    DICOM file format (Digital Imaging and Communications in Medicine) was developed by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) as a standard for exchanging medical images and related information across different healthcare systems. It serves as a universal language for medical imaging, enabling interoperability between various imaging devices and systems. DICOM ensures that medical images can be exchanged and viewed consistently regardless of the manufacturer or modality.

    DICOM image format supports a broad range of medical imaging modalities, including X-ray, MRI, OCT, ultrasound, nuclear medicine, and more. It also covers related data, such as patient information, study details, image annotations, and results.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Test how it works yourself

    Demo Account Get brochure

     

    As the DICOM format continues to evolve to keep up with advancements in medical imaging technology, our article aims to raise awareness among ophthalmologists and optometrists about the DICOM file format.

    What is DICOM format? You can also watch a short video about DICOM and non-DICOM file formats.

    What is DICOM file format?

    Image files that adhere to part 10 of the DICOM standard are commonly known as “DICOM format files” or simply “DICOM files,” and their file extension is “.dcm.” In ophthalmology, DICOM is a widely used file format for storing and transmitting medical images. DICOM files are used to store various types of ophthalmic images as well, including retinal images, optical coherence tomography (OCT) scans, visual field tests, and angiography images.

    DICOM files consist of two main components: the header and the image data. The header contains metadata that describes the patient, study, series, and image acquisition parameters.

    DICOM image format

    This metadata includes information such as patient demographics, image acquisition parameters (e.g., imaging modality, image orientation, pixel spacing), and any annotations or measurements made on the image. The image data itself is typically stored in a compressed format, such as JPEG or JPEG 2000, within the DICOM file.

    DICOM files also support the exchange of images and associated data between different medical imaging devices and systems. This enables eye care specialists to easily share and access ophthalmic images across different platforms, such as picture archiving and communication systems (PACS), ophthalmic imaging devices, and electronic health record (EHR) systems.

    By using DICOM, ophthalmologists and optometrists can efficiently store, retrieve, and analyze ophthalmic images, ensuring accurate diagnoses and effective patient care. In the next paragraphs, we will tell you more about the benefits of the DICOM file format for eye care specialists.

     

    Benefits of DICOM format

    The DICOM standard ensures interoperability between different vendors’ OCT devices and facilitates seamless data sharing and analysis. The main difference between DICOM and other image formats is that it groups information into data sets. A DICOM file consists of several tags, all packed into a single file. It stores such info as:

    • demographic details about the patient
    • imaging study’s acquisition parameters
    • image dimensions
    • matrix size
    • color space
    • an array of additional non-intensity information necessary for accurate image display by computers.

    If you have to enter the patient’s information manually, there’s always a chance you can misspell the name or other information. However, when using a DICOM file to store patients’ information and monitor patients’ health, eye care specialists can be sure the chance of human bias is much lower.

    When you work in an optometry practice or a clinic, you may spend a lot of time filling in the details every time you upload a file. And if your clinic is busy and you do 30-50 uploads daily, it could take hours. Using DICOM image format significantly speeds up the process and reduces errors.   

    DICOM file format

    Another benefit of the DICOM image format is that the header data information is encoded within the file so that it cannot be accidentally separated from the image data. 

    DICOM files can be stored in a DICOM server or transmitted between DICOM-compliant systems using the DICOM network protocol (DICOM C-STORE or DICOMweb). DICOM SR (structure reporting) allows for the structured representation of measurement data and annotations in OCT images. It enables the storage of quantitative measurements, such as retinal thickness or optic nerve parameters, as structured data within the DICOM file.

    In addition, eye care specialists are able to manipulate the brightness of the image when using the DICOM viewing software. Some areas of an image can be increased or decreased for a better viewing and diagnostic experience.

    Is DICOM file format popular among OCT providers?

    When it comes to optical coherence tomography, many OCT device manufacturers and software providers support the DICOM standard for storing and exchanging OCT images. Some of the prominent OCT providers that offer DICOM support include:

    • Heidelberg Engineering is a well-known provider of OCT devices and software solutions for ophthalmology. They offer OCT devices like the Spectralis OCT, which supports DICOM connectivity. The DICOM capabilities of their systems enable seamless integration with PACS and other healthcare systems.
    • Carl Zeiss Meditec is a leading manufacturer of ophthalmic devices, including OCT systems. Their OCT devices, such as the Cirrus OCT, are DICOM-compatible, allowing for efficient storage and sharing of OCT images with other DICOM-compliant systems.
    • Topcon Medical Systems is another prominent provider of OCT devices. Their OCT systems, such as the Topcon 3D OCT, support DICOM connectivity, enabling interoperability with other DICOM-enabled devices and systems.
    • NIDEK offers a range of ophthalmic imaging devices, including OCT systems. Their OCT platforms, such as the NIDEK RS-3000, support DICOM, allowing for seamless integration with DICOM-compliant infrastructure, such as PACS and EHR systems.
    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Test how it works yourself

    Demo Account Get brochure

    These are just a few examples of OCT providers that support the DICOM standard. It’s important to note that DICOM support may vary among different models and versions of OCT devices from each manufacturer. We recommend you consult with the specific manufacturer or review their product documentation to confirm the DICOM capabilities of their OCT systems.

    Why do we recommend using DICOM file format with Altris AI?

    Modern DICOM viewer software extends beyond simple viewing. It can enhance image quality, generate additional data, take measurements, and more, and Altris AI is no exception. Using the DICOM image file gives you more opportunities within the platform.

    Such features as

    • retina layers thickness and linear measurements

    DICOM file format

    • area and volume calculations

    DICOM file format

    are only available when using the DICOM file format. This is because it contains the original image pixel data without modifying the study metadata. In case you upload an image, retina layers thickness won’t be available, as well as the measurements.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Test how it works yourself

    Demo Account Get brochure

    Another advantage of the DICOM format is that you can add patient and examination details in a few clicks by just uploading a DICOM file since this information is being pulled out automatically. 

    DICOM file format

    In the case of other image formats, when uploading an examination, you would have to manually fill in a bunch of information such as scan widths, eye type, etc.

    Considering all mentioned above, using DICOM format files saves time, increases efficiency, and gives you more opportunities within the Altris AI platform.

    Summing up

    What is DICOM format? In conclusion, the DICOM file format proves to be a valuable asset for eye care specialists. Its unique characteristics, such as grouping information into data sets and incorporating standardized tags within a single file, offer many advantages. 

    This format ensures the preservation of accurate and comprehensive data, reducing the potential for human error and minimizing the risk of data loss or misinterpretation. The DICOM file format streamlines the archival, organization, and display of images, optimizing the workflow of eye care specialists. 

    By adhering to the DICOM standard, OCT devices and software solutions ensure compatibility, interoperability, and consistent data representation across different platforms. This enables efficient communication and collaboration among healthcare professionals, enhances research capabilities, and promotes the broader use and exchange of OCT imaging data.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Test how it works yourself

    Demo Account Get brochure

    With its widespread adoption and compatibility with various medical imaging systems, DICOM empowers ophthalmologists and optometrists to provide efficient and high-quality care while promoting seamless collaboration and knowledge sharing within the field. Ultimately, the DICOM file format plays a vital role in enhancing patient care, advancing research, and fostering innovation in the field of eye care.