Free Trial

Featured This month

  • Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Diabetic Retinopathy Screening
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Table of Contents

    What are the diabetic retinopathy screening methods?

    Fundus images in DR screening

    Can OCT detect diabetic retinopathy?

    What does diabetic retinopathy look like on OCT?

    What are the screening intervals for diabetic retinopathy?

    What are OCT biomarkers for diabetic macular edema?

    Monitoring diabetic retinopathy: OCT red flags

    Diabetic retinopathy treatment

    Conclusion

    Diabetic retinopathy (DR) remains the leading cause of irreversible vision loss among working-age adults worldwide. According to the International Diabetes Federation (IDF), one in three patients with diabetes shows signs of DR, and 10% develop diabetic macular edema (DME). Early diagnosis, systematic screening, and individualized monitoring are essential to prevent vision loss.

    What are the diabetic retinopathy screening methods?

    Modern methods of DR screening include:

    • Telemedicine platforms with automated fundus image transmission
    • FDA-approved AI-based systems
    • Mobile fundus cameras with Wi-Fi synchronization for field examinations
    • Smartphone-based platforms with specialized lenses

    In practice, these methods are often combined. For example, patients may undergo fundus photography, after which the images are transmitted to telemedicine centers and analysed by AI algorithms. More complex cases are then referred to ophthalmologists.

    DR screening is also frequently incorporated into annual diabetes checkups conducted by primary care physicians trained in basic fundus photography. This approach, already successfully implemented in several EU countries, has reduced the incidence of severe DR.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Innovations in DR screening have broadened access for rural residents, older adults, and individuals with limited mobility. Integration into national e-health systems enables automated reminders and electronic medical record linkage, incorporating laboratory data (HbA1c, blood pressure) alongside retinal images.

    Fundus images in DR screening

    Fundus photography is the optimal primary screening method due to its high diagnostic yield, cost-efficiency, simplicity, and ability to integrate with AI and telemedicine solutions. 

    It enables detection of microaneurysms, hemorrhages, exudates, and neovascularization, often before symptoms arise. National screening programs rely heavily on digital fundus imaging, which, when combined with AI, provides an efficient platform for mass DR detection.

    Advances in fundus imaging for diabetic retinopathy have improved efficiency. Modern non-mydriatic cameras deliver high-quality images without pupil dilation, while automated image analysis supports rapid identification of suspicious cases. Cloud storage and telemedicine platforms facilitate remote evaluation, increasing coverage in regions with limited ophthalmology services.

    Next-generation wide-field cameras further enhance detection by capturing peripheral pathology. Some devices also generate automated annotations, reporting lesion type, DR stage, and DME presence, thereby standardizing interpretation and expediting clinical decision-making.

    Can OCT detect diabetic retinopathy?

    Although OCT has not traditionally been considered a primary screening tool for diabetic retinopathy, its role in diagnostics is steadily growing. OCT is increasingly used as a supplementary method to fundus photography, especially for detecting early signs of diabetic macular edema and morphological changes in the central retina that are not yet visible during ophthalmoscopy.

    Due to its high resolution, OCT allows visualization of structural changes such as photoreceptor layer disruption, subclinical intraretinal fluid, thickening of the neurosensory retina, and foveal edema. These changes often precede clinically significant macular edema and can only be detected by OCT.

    OCT is also useful for identifying other causes of vision loss in diabetic patients, for example, ruling out age-related macular degeneration.

    Recent studies confirm that adding OCT to standard screening significantly increases diagnostic accuracy for DME. Therefore, many experts recommend combining fundus photography with OCT in patients with long-standing diabetes, poor glycemic control, or complaints of vision deterioration.

    What does diabetic retinopathy look like on OCT?

    Diabetic retinopathy OCT scans offer a unique opportunity to identify changes not always seen on fundus photography.

    Typical DR OCT findings include:

    • Destruction of outer retinal layers, particularly the ellipsoid zone, indicating photoreceptor damage
    • Intraretinal hyperreflective foci, hard exudates
    • Microaneurysms
    • Changes in retinal thickness and neuroepithelial layer atrophy
    • Diabetic macular edema with intraretinal hyporeflective cystoid spaces and neuroepithelial swelling
    • Subretinal fluid, resulting from increased vascular permeability
    • Disorganization of inner retinal layers (DRIL), an unfavorable prognostic sign associated with reduced visual acuity
    • Development of epiretinal membranes

    Diabetic Retinopathy Screening with AI

    OCT also detects proliferative changes and tractional zones, which may lead to tractional retinal detachment.

    Beyond structural analysis, OCT angiography (OCTA) is increasingly used to visualize microvascular retinal changes without contrast injection. OCTA helps identify neovascularization, capillary network disruption, and the extent of macular ischemia.

    What are the screening intervals for diabetic retinopathy?

    The screening frequency for diabetic retinopathy must be tailored to diabetes type, disease stage, and risk factors:

    Type 1 diabetes

    • First screening: 3–5 years after diagnosis (due to onset in children and young adults)
    • Then annually, if no DR is detected
    • If DR is present, frequency depends on severity

    Type 2 diabetes

    • Screening at diagnosis, as DR may already be present.
    • If no DR, repeat every 1–2 years.

    Patients with confirmed DR

    • No visible DR, mild non-proliferative diabetic retinopathy (NPDR), no DME — every 1–2 years
    • Moderate NPDR — every 6–12 months.
    • Severe NPDR — every 3 months.
    • Proliferative DR (PDR) — monthly, with regular OCT monitoring of the macula.
    • DME — monthly if center-involving, every 3 months if not.

    Pregnant women with type 1 or type 2 diabetes

    • Screening before conception or in the first trimester, with follow-up each trimester and postpartum
    • Screening is not required for gestational diabetes without pre-existing diabetes

    Post-treatment patients (laser or vitrectomy)

    • Typically, every 3–6 months during the first year, individualized based on retinal stability
    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are OCT biomarkers for diabetic macular edema?

    OCT is a key method for detecting DME, thanks to its ability to visualize retinal layers with micron resolution. OCT not only confirms DME presence but also identifies biomarkers with prognostic value for treatment selection, therapy response prediction, and monitoring.

    Main OCT biomarkers in DME:

    • Cystoid hyporeflective intraretinal spaces, usually found in the inner nuclear layer (INL) or outer plexiform layer (OPL). Their number, size, and location correlate with edema severity. Large or confluent spaces may indicate chronicity and a worse prognosis.
    • Subretinal fluid (fluid between the neurosensory retina and retinal pigment epithelium). While often associated with a better visual prognosis, it requires careful monitoring and consideration in anti-VEGF therapy.
    • Central macular thickening. Changes in macular thickness are key indicators of treatment effectiveness.

    DR Screening with Altris AI

    Monitoring diabetic retinopathy: OCT red flags

    Patients with DR require ongoing monitoring to identify early signs of progression. Worrisome OCT signs of disease progression include. Worrisome OCT signs of disease progression include:

    • Progressive central macular thickening despite treatment.
    • Increase in intraretinal or subretinal fluid, appearance or enlargement of cystoid spaces
    • Appearance of new hyperreflective foci, signaling inflammatory activity. Hyperreflective foci may precede hard exudates or RPE changes.
    • Appearance or progression of DRIL. DRIL is an independent predictor of poor prognosis, even when morphological improvement is seen on OCT.
    • Ellipsoid zone disruption, indicating photoreceptor damage.
    • Signs of macular ischemia. Although better evaluated with OCTA, indirect signs on OCT may include thinning of the inner retinal layers.
    • Tractional changes: epiretinal membrane formation, inner retinal stretching, or macular traction.

    AI in optometry

     

    The appearance of these OCT signs should prompt reassessment of therapy, potential regimen adjustment (e.g., switching anti-VEGF agents, introducing steroids, or combination therapy), and referral to retinal surgeons when tractional changes are present.

    Diabetic retinopathy treatment

    Treatment of DR requires a comprehensive approach, taking into account disease stage, individual patient characteristics, OCT findings, comorbidities, and prognostic biomarkers.. Modern strategies include preventive, pharmacological, and surgical methods, as well as personalized medicine tools based on retinal imaging.

    1. Risk stratification and treatment choice
      Therapy is chosen based on:
    • DR stage (non-proliferative, proliferative, with or without DME).
    • DME form (focal, diffuse, with or without subretinal fluid).
    • Presence of DRIL, EZ disruption, ischemic changes on OCTA.
    • Response to prior therapy (anti-VEGF, steroids, laser).
    • Comorbidities (renal insufficiency, hypertension, poor compliance).

    Low-risk patients may undergo observation or focal laser. Those with significant DME — anti-VEGF or steroid injections. Proliferative DR patients often require panretinal laser photocoagulation or vitrectomy.

    1. Pharmacotherapy: anti-VEGF and steroids
      Anti-VEGF agents (aflibercept, ranibizumab, bevacizumab) remain first-line therapy for DME, especially effective in patients with significant edema and no ischemia. New agents with extended effects, including port delivery systems, are emerging.
      Steroids are used in persistent DME, anti-VEGF resistance, or inflammatory phenotypes.
    2. Laser therapy
      Although injections have largely replaced laser for DME, panretinal photocoagulation remains standard for proliferative DR. Subthreshold micropulse laser is increasingly used for focal edema with minimal tissue impact.
    3. Surgery
      Vitrectomy is indicated in cases of tractional macular edema, vitreous hemorrhage, or retinal detachment.
    4. Personalization based on OCT
      Modern treatment protocols integrate OCT biomarkers for tailored strategies and prognosis. AI systems can automatically generate treatment protocols from OCT data, highly valuable where retina specialists are limited.
    5. Patient education and multidisciplinary care
      Treatment success depends heavily on patient adherence. Patients must understand the need for regular injections, monitoring, and systemic control. Collaboration between ophthalmologists, endocrinologists, and family doctors ensures stable glycemic control and slows DR progression.

    Conclusion

    Screening and monitoring of diabetic retinopathy are evolving rapidly with advances in telemedicine, AI, and OCT-based imaging. Early detection through decentralized, technology-driven approaches, combined with individualized monitoring and biomarker-guided treatment, is critical to preserving vision. Personalized care strategies—supported by imaging technologies and multidisciplinary collaboration—offer the most effective means to reduce the global burden of DR-related blindness.

  • Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska, CMO
    1 min.

    Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    Chicago, IL – August 26, 2025 – Altris AI introduces an advanced flagging system to search through the large volumes of OCT scans, including historical data.

    Now, with Altris AI’s new functionality, eye care professionals can instantly identify OCT scans with specific retina pathologies or biomarkers from the list of over 70 conditions. For example, clinicians can locate OCT scans of all patients with a Soft Drusen or Dry AMD, forming cohorts for clinical or research purposes.

    For those who work with Geographic Atrophy biomarkers, it is also possible to exclude the presence of GA biomarkers in 1, 3,6 mm ETDRS zones to spot early development of this pathology.

    The flagging system is precise and enables fast, targeted searches across historical records and large datasets – including OCT scans from different devices. This advancement supports a more efficient workflow and enhances access to critical data for both diagnostics and research.

    “Flags are a clinical shortcut. Instead of manually searching through thousands of scans, you can now filter precisely for what you need—whether that’s subretinal fluid, GA progression, or early glaucoma indicators. It’s about making the data work for you.” Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI.

    With flags for smart filtering, eye care specialists can:

    • Track risk-related biomarkers and set reminders for patient follow-ups
    • Quickly identify eligible candidates for clinical studies by searching through large volumes of data
    • Confidently introduce new treatments by finding the right patient profiles
    • Filter rare or complex cases to study unique combinations of pathologies and biomarkers and their progression

    “Flags make it possible to build patient cohorts in minutes,” Maria Znamenska, Chief Medical Officer at Altris AI, comments on this new feature. “Whether it’s for the research or for introducing the new therapy, you now have a reliable tool to search for the right patients efficiently.

    For example, the FDA has recently approved the first treatment for Macular Telangiectasia Type 2, so eye care specialists can now search through their whole patient database and find those who have this particular pathology in minutes to offer them a new treatment.”

    The release of flags reinforces Altris AI’s position as a leading AI decision support platform for OCT analysis for both clinical care and research purposes. By enabling customizable filtering across over 70 pathologies and biomarkers, flags support better disease tracking, faster research, and more personalized treatment planning.

    About Altris AI
    Altris AI is a vendor-neutral, web-based AI Decision Support for OCT Analysis platform. It supports early diagnosis, treatment planning, and research across more than 70 biomarkers and retinal pathologies. Altris AI is used by leading clinics and research centers worldwide.

popular Posted

  • Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Diabetic Retinopathy Screening
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Diabetic Retinopathy Screening and Monitoring: Smarter Tools for Better Outcomes

    Table of Contents

    What are the diabetic retinopathy screening methods?

    Fundus images in DR screening

    Can OCT detect diabetic retinopathy?

    What does diabetic retinopathy look like on OCT?

    What are the screening intervals for diabetic retinopathy?

    What are OCT biomarkers for diabetic macular edema?

    Monitoring diabetic retinopathy: OCT red flags

    Diabetic retinopathy treatment

    Conclusion

    Diabetic retinopathy (DR) remains the leading cause of irreversible vision loss among working-age adults worldwide. According to the International Diabetes Federation (IDF), one in three patients with diabetes shows signs of DR, and 10% develop diabetic macular edema (DME). Early diagnosis, systematic screening, and individualized monitoring are essential to prevent vision loss.

    What are the diabetic retinopathy screening methods?

    Modern methods of DR screening include:

    • Telemedicine platforms with automated fundus image transmission
    • FDA-approved AI-based systems
    • Mobile fundus cameras with Wi-Fi synchronization for field examinations
    • Smartphone-based platforms with specialized lenses

    In practice, these methods are often combined. For example, patients may undergo fundus photography, after which the images are transmitted to telemedicine centers and analysed by AI algorithms. More complex cases are then referred to ophthalmologists.

    DR screening is also frequently incorporated into annual diabetes checkups conducted by primary care physicians trained in basic fundus photography. This approach, already successfully implemented in several EU countries, has reduced the incidence of severe DR.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Innovations in DR screening have broadened access for rural residents, older adults, and individuals with limited mobility. Integration into national e-health systems enables automated reminders and electronic medical record linkage, incorporating laboratory data (HbA1c, blood pressure) alongside retinal images.

    Fundus images in DR screening

    Fundus photography is the optimal primary screening method due to its high diagnostic yield, cost-efficiency, simplicity, and ability to integrate with AI and telemedicine solutions. 

    It enables detection of microaneurysms, hemorrhages, exudates, and neovascularization, often before symptoms arise. National screening programs rely heavily on digital fundus imaging, which, when combined with AI, provides an efficient platform for mass DR detection.

    Advances in fundus imaging for diabetic retinopathy have improved efficiency. Modern non-mydriatic cameras deliver high-quality images without pupil dilation, while automated image analysis supports rapid identification of suspicious cases. Cloud storage and telemedicine platforms facilitate remote evaluation, increasing coverage in regions with limited ophthalmology services.

    Next-generation wide-field cameras further enhance detection by capturing peripheral pathology. Some devices also generate automated annotations, reporting lesion type, DR stage, and DME presence, thereby standardizing interpretation and expediting clinical decision-making.

    Can OCT detect diabetic retinopathy?

    Although OCT has not traditionally been considered a primary screening tool for diabetic retinopathy, its role in diagnostics is steadily growing. OCT is increasingly used as a supplementary method to fundus photography, especially for detecting early signs of diabetic macular edema and morphological changes in the central retina that are not yet visible during ophthalmoscopy.

    Due to its high resolution, OCT allows visualization of structural changes such as photoreceptor layer disruption, subclinical intraretinal fluid, thickening of the neurosensory retina, and foveal edema. These changes often precede clinically significant macular edema and can only be detected by OCT.

    OCT is also useful for identifying other causes of vision loss in diabetic patients, for example, ruling out age-related macular degeneration.

    Recent studies confirm that adding OCT to standard screening significantly increases diagnostic accuracy for DME. Therefore, many experts recommend combining fundus photography with OCT in patients with long-standing diabetes, poor glycemic control, or complaints of vision deterioration.

    What does diabetic retinopathy look like on OCT?

    Diabetic retinopathy OCT scans offer a unique opportunity to identify changes not always seen on fundus photography.

    Typical DR OCT findings include:

    • Destruction of outer retinal layers, particularly the ellipsoid zone, indicating photoreceptor damage
    • Intraretinal hyperreflective foci, hard exudates
    • Microaneurysms
    • Changes in retinal thickness and neuroepithelial layer atrophy
    • Diabetic macular edema with intraretinal hyporeflective cystoid spaces and neuroepithelial swelling
    • Subretinal fluid, resulting from increased vascular permeability
    • Disorganization of inner retinal layers (DRIL), an unfavorable prognostic sign associated with reduced visual acuity
    • Development of epiretinal membranes

    Diabetic Retinopathy Screening with AI

    OCT also detects proliferative changes and tractional zones, which may lead to tractional retinal detachment.

    Beyond structural analysis, OCT angiography (OCTA) is increasingly used to visualize microvascular retinal changes without contrast injection. OCTA helps identify neovascularization, capillary network disruption, and the extent of macular ischemia.

    What are the screening intervals for diabetic retinopathy?

    The screening frequency for diabetic retinopathy must be tailored to diabetes type, disease stage, and risk factors:

    Type 1 diabetes

    • First screening: 3–5 years after diagnosis (due to onset in children and young adults)
    • Then annually, if no DR is detected
    • If DR is present, frequency depends on severity

    Type 2 diabetes

    • Screening at diagnosis, as DR may already be present.
    • If no DR, repeat every 1–2 years.

    Patients with confirmed DR

    • No visible DR, mild non-proliferative diabetic retinopathy (NPDR), no DME — every 1–2 years
    • Moderate NPDR — every 6–12 months.
    • Severe NPDR — every 3 months.
    • Proliferative DR (PDR) — monthly, with regular OCT monitoring of the macula.
    • DME — monthly if center-involving, every 3 months if not.

    Pregnant women with type 1 or type 2 diabetes

    • Screening before conception or in the first trimester, with follow-up each trimester and postpartum
    • Screening is not required for gestational diabetes without pre-existing diabetes

    Post-treatment patients (laser or vitrectomy)

    • Typically, every 3–6 months during the first year, individualized based on retinal stability
    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are OCT biomarkers for diabetic macular edema?

    OCT is a key method for detecting DME, thanks to its ability to visualize retinal layers with micron resolution. OCT not only confirms DME presence but also identifies biomarkers with prognostic value for treatment selection, therapy response prediction, and monitoring.

    Main OCT biomarkers in DME:

    • Cystoid hyporeflective intraretinal spaces, usually found in the inner nuclear layer (INL) or outer plexiform layer (OPL). Their number, size, and location correlate with edema severity. Large or confluent spaces may indicate chronicity and a worse prognosis.
    • Subretinal fluid (fluid between the neurosensory retina and retinal pigment epithelium). While often associated with a better visual prognosis, it requires careful monitoring and consideration in anti-VEGF therapy.
    • Central macular thickening. Changes in macular thickness are key indicators of treatment effectiveness.

    DR Screening with Altris AI

    Monitoring diabetic retinopathy: OCT red flags

    Patients with DR require ongoing monitoring to identify early signs of progression. Worrisome OCT signs of disease progression include. Worrisome OCT signs of disease progression include:

    • Progressive central macular thickening despite treatment.
    • Increase in intraretinal or subretinal fluid, appearance or enlargement of cystoid spaces
    • Appearance of new hyperreflective foci, signaling inflammatory activity. Hyperreflective foci may precede hard exudates or RPE changes.
    • Appearance or progression of DRIL. DRIL is an independent predictor of poor prognosis, even when morphological improvement is seen on OCT.
    • Ellipsoid zone disruption, indicating photoreceptor damage.
    • Signs of macular ischemia. Although better evaluated with OCTA, indirect signs on OCT may include thinning of the inner retinal layers.
    • Tractional changes: epiretinal membrane formation, inner retinal stretching, or macular traction.

    AI in optometry

     

    The appearance of these OCT signs should prompt reassessment of therapy, potential regimen adjustment (e.g., switching anti-VEGF agents, introducing steroids, or combination therapy), and referral to retinal surgeons when tractional changes are present.

    Diabetic retinopathy treatment

    Treatment of DR requires a comprehensive approach, taking into account disease stage, individual patient characteristics, OCT findings, comorbidities, and prognostic biomarkers.. Modern strategies include preventive, pharmacological, and surgical methods, as well as personalized medicine tools based on retinal imaging.

    1. Risk stratification and treatment choice
      Therapy is chosen based on:
    • DR stage (non-proliferative, proliferative, with or without DME).
    • DME form (focal, diffuse, with or without subretinal fluid).
    • Presence of DRIL, EZ disruption, ischemic changes on OCTA.
    • Response to prior therapy (anti-VEGF, steroids, laser).
    • Comorbidities (renal insufficiency, hypertension, poor compliance).

    Low-risk patients may undergo observation or focal laser. Those with significant DME — anti-VEGF or steroid injections. Proliferative DR patients often require panretinal laser photocoagulation or vitrectomy.

    1. Pharmacotherapy: anti-VEGF and steroids
      Anti-VEGF agents (aflibercept, ranibizumab, bevacizumab) remain first-line therapy for DME, especially effective in patients with significant edema and no ischemia. New agents with extended effects, including port delivery systems, are emerging.
      Steroids are used in persistent DME, anti-VEGF resistance, or inflammatory phenotypes.
    2. Laser therapy
      Although injections have largely replaced laser for DME, panretinal photocoagulation remains standard for proliferative DR. Subthreshold micropulse laser is increasingly used for focal edema with minimal tissue impact.
    3. Surgery
      Vitrectomy is indicated in cases of tractional macular edema, vitreous hemorrhage, or retinal detachment.
    4. Personalization based on OCT
      Modern treatment protocols integrate OCT biomarkers for tailored strategies and prognosis. AI systems can automatically generate treatment protocols from OCT data, highly valuable where retina specialists are limited.
    5. Patient education and multidisciplinary care
      Treatment success depends heavily on patient adherence. Patients must understand the need for regular injections, monitoring, and systemic control. Collaboration between ophthalmologists, endocrinologists, and family doctors ensures stable glycemic control and slows DR progression.

    Conclusion

    Screening and monitoring of diabetic retinopathy are evolving rapidly with advances in telemedicine, AI, and OCT-based imaging. Early detection through decentralized, technology-driven approaches, combined with individualized monitoring and biomarker-guided treatment, is critical to preserving vision. Personalized care strategies—supported by imaging technologies and multidisciplinary collaboration—offer the most effective means to reduce the global burden of DR-related blindness.

  • Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska, CMO
    1 min.

    Altris AI introduces Flags to instantly identify OCT scans with specific retina pathologies or biomarkers

    Chicago, IL – August 26, 2025 – Altris AI introduces an advanced flagging system to search through the large volumes of OCT scans, including historical data.

    Now, with Altris AI’s new functionality, eye care professionals can instantly identify OCT scans with specific retina pathologies or biomarkers from the list of over 70 conditions. For example, clinicians can locate OCT scans of all patients with a Soft Drusen or Dry AMD, forming cohorts for clinical or research purposes.

    For those who work with Geographic Atrophy biomarkers, it is also possible to exclude the presence of GA biomarkers in 1, 3,6 mm ETDRS zones to spot early development of this pathology.

    The flagging system is precise and enables fast, targeted searches across historical records and large datasets – including OCT scans from different devices. This advancement supports a more efficient workflow and enhances access to critical data for both diagnostics and research.

    “Flags are a clinical shortcut. Instead of manually searching through thousands of scans, you can now filter precisely for what you need—whether that’s subretinal fluid, GA progression, or early glaucoma indicators. It’s about making the data work for you.” Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI.

    With flags for smart filtering, eye care specialists can:

    • Track risk-related biomarkers and set reminders for patient follow-ups
    • Quickly identify eligible candidates for clinical studies by searching through large volumes of data
    • Confidently introduce new treatments by finding the right patient profiles
    • Filter rare or complex cases to study unique combinations of pathologies and biomarkers and their progression

    “Flags make it possible to build patient cohorts in minutes,” Maria Znamenska, Chief Medical Officer at Altris AI, comments on this new feature. “Whether it’s for the research or for introducing the new therapy, you now have a reliable tool to search for the right patients efficiently.

    For example, the FDA has recently approved the first treatment for Macular Telangiectasia Type 2, so eye care specialists can now search through their whole patient database and find those who have this particular pathology in minutes to offer them a new treatment.”

    The release of flags reinforces Altris AI’s position as a leading AI decision support platform for OCT analysis for both clinical care and research purposes. By enabling customizable filtering across over 70 pathologies and biomarkers, flags support better disease tracking, faster research, and more personalized treatment planning.

    About Altris AI
    Altris AI is a vendor-neutral, web-based AI Decision Support for OCT Analysis platform. It supports early diagnosis, treatment planning, and research across more than 70 biomarkers and retinal pathologies. Altris AI is used by leading clinics and research centers worldwide.

  • Altris AI Achieves MDSAP Certification, Strengthening Global Presence and Clinical Credibility

    AI Ophthalmology and Optometry | Altris AI Altris Inc.
    22.08.2025
    1 min.

    22.08.2025

    Altris AI Achieves MDSAP Certification, Strengthening Global Presence and Clinical Credibility

    Altris Inc., a leading AI decision support platform for OCT scan analysis, proudly announces that it has passed the Medical Device Single Audit Program (MDSAP) audit. 

    Based on the objective evidence reviewed, this audit enables a recommendation for Initial certification to ISO 13485:2016 MDSAP, including the requirements of Australia, Brazil, Canada, the USA, and Japan, and EU 2017/745, and that the scope was reviewed and found to be appropriate for ISO 13485:2016/MDSAP and EU MDR 2017/745.

    The results of this audit are suitable for obtaining the EU MDR 2017/745 certificate, which we are currently in the process of pursuing.

    ISO 13485:2016/MDSAP enables Altris Inc. to “design, manufacture, and distribute medical software for the analysis and diagnosis of retinal conditions globally.” It is recognized by leading global health regulators and signals trust and credibility to public and private hospitals, eye care networks, and optometry chains worldwide. 

    MDSAP Certification also opens the door for Altris Inc. to enter new international markets, including Asia-Pacific, Latin America, and additional parts of North America. The MDSAP certification allows a single regulatory audit of Altris AI’s Quality Management System (QMS) to be recognized by multiple major health authorities, including:

    • FDA (United States)
    • Health Canada
    • TGA (Australia)
    • ANVISA (Brazil)
    • MHLW/PMDA (Japan)

    MDSAP enforces that the Quality Management System for developing, testing, and maintaining AI Decision Support for OCT complies with international medical device standards. Altris AI Decision Support for OCT Analysis system that facilitates the detection and monitoring of over 70 retinal pathologies and biomarkers, including early signs of glaucoma, diabetic retinopathy, and age-related macular degeneration. 

    “Achieving ISO 13485:2016 certification under the stringent MDSAP requirements is a significant accomplishment for our team,” said Maria Znamenska, MD, PhD, Chief Medical Officer at Altris AI. “As a practicing ophthalmologist, I understand that the safety of patients is the absolute priority. Especially when implementing such an innovative technology as AI for decision support in OCT analysis. That is why we did everything possible to build quality processes that guarantee the highest level of safety for the patients.

    This certification enables Altris AI to expand its presence and offer eye care specialists upgraded functions such as GA progression monitoring, flags for smart patient filtering, or automated drusen count.”

    “This is more than a regulatory milestone for our team  – it’s a signal to the global eye care community that Altris AI is a trusted clinical partner,” said Andrey Kuropyatnyk, CEO of Altris AI. 

    About Altris AI

    Founded in 2017, Altris AI is at the forefront of integrating artificial intelligence analysis into ophthalmology and optometry.

    The company’s platform is designed to assist eye care professionals in interpreting OCT scans with greater objectivity and make informed treatment decisions. It’s a vendor-neutral platform compatible with OCT devices from 8 major global manufacturers. With a commitment to innovation and compliance, Altris AI continues to develop solutions that set higher standards in the eye care industry and improve patient outcomes.

     

  • Glaucoma OCT Monitoring: From Early Detection to Ongoing Management

    Glaucoma OCT monitoring with Altris AI
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min

    Glaucoma OCT Monitoring: From Early Detection to Ongoing Management

    Table of Contents

    1. Why is early detection of glaucoma so important?

    2. How to detect glaucoma in early stages: key methods

    3. Why is OCT glaucoma monitoring important after diagnosis?

    4. What additional tools are used to monitor glaucoma treatment?

    5. Conclusion

    According to the World Health Organization (WHO), glaucoma is the second most common cause of blindness globally, following cataracts, but the leading cause of irreversible blindness. The challenge lies in the fact that most forms of glaucoma are asymptomatic in the early stages, meaning the diagnosis is often made only after significant loss of retinal ganglion cells has occurred.

    Traditional methods of detecting glaucoma, such as ophthalmoscopy and perimetry, remain valuable but have notable limitations—especially in terms of sensitivity to early changes. Functional tests like perimetry typically detect damage only after 30–40% of the optic nerve fibres have already been lost. This is why modern ophthalmology increasingly relies on techniques that detect structural damage before functional loss appears.

    Optical Coherence Tomography (OCT) has fundamentally changed glaucoma diagnostics over the past two decades. It enables non-invasive, micron-level imaging of retinal microstructures and provides objective measurements of the retinal nerve fibre layer (RNFL), ganglion cell complex (GCC), and optic nerve head (ONH) parameters. Moreover, the advent of OCT angiography (OCTA) has introduced a new dimension in assessing microcirculation—complementing structural analysis and potentially predicting glaucoma progression.

    Today, OCT is the standard for early detection, monitoring, and risk stratification of glaucoma progression, as recognised in international clinical guidelines. When combined with functional tests, tonometry, and anterior chamber angle assessment, OCT becomes the foundation for personalised glaucoma management.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    This article aims to consolidate current OCT capabilities in glaucoma diagnosis. It explores key biomarkers, progression assessment techniques, integration with other diagnostic tools, and the role of patient involvement in disease monitoring.

    Why is early detection of glaucoma so important?

    Early detection of glaucoma is critical, as optic nerve damage in glaucoma is irreversible. Many patients seek care only after considerable vision loss has occurred, at which point treatment can slow progression but cannot restore lost function. This is why the ophthalmic community emphasizes the importance of detecting glaucoma at preclinical or pre-perimetric stages.

    How does OCT help in detecting glaucoma early?

    OCT provides high-resolution imaging of the retina and optic nerve head. Unlike subjective functional tests, OCT offers objective, quantitative information on ganglion cells, nerve fibre layers, and the neuroretinal rim, enabling detection of even subtle deviations from the norm.

    Recent OCT models provide even deeper visualization, including the lamina cribrosa, the structure of which is altered in glaucoma. Today, OCT is recognized as a key diagnostic method in the guidelines of the European Glaucoma Society and the American Academy of Ophthalmology.

    How to detect glaucoma in early stages: key methods

    There are four methods to detect glaucoma early: measuring Ganglion Cell Complex (GCC) thickness and GCC asymmetry, RNFL thickness analysis, evaluating optic nerve head parameters and the DDLS scale, and using optical coherence tomography angiography (OCTA) to evaluate other parameters that may indicate glaucoma.

    Glaucoma detection method 1: measuring GCC thickness and asymmetry

    One of the most sensitive preclinical biomarkers of glaucomatous damage is thinning of the ganglion cell complex (GCC), which includes the ganglion cell layer (GCL), inner plexiform layer (IPL), and macular RNFL (mRNFL). It is assessed through macular OCT scans. Damage in this area is particularly critical, as 50–60% of all ganglion cells are concentrated within the central 6 mm zone.

    Measuring GCC Thickness and Asymmetry

    Assessing asymmetry between the superior and inferior halves of the macula within the GCC is a key diagnostic indicator. Studies show that minimum GCC thickness and FLV/GLV indices (Focal Loss Volume / Global Loss Volume) are predictors of future RNFL thinning or emerging visual field defects. Asymmetry maps significantly ease clinical interpretation.

    A newer approach—vector analysis of GCC loss—also allows clinicians to visualise the direction of damage, which often correlates with future visual field defects.

    Measuring Ganglion Cell Complex (GCC) Thickness and GCC Asymmetry

    Glaucoma detection method 2: RNFL thickness analysis

    RNFL analysis is among the most widely used glaucoma diagnostic methods. The RNFL reflects the axons of the ganglion cells and is readily measured in optic nerve scans. Temporal sectors are the most sensitive and often show the earliest changes.

    Even when the overall thickness appears normal, localised defects should raise suspicion. Sectoral thinning of ≥5–7 μm is considered statistically significant. Age-related RNFL decline (~0.2–0.5 μm/year) must also be considered.

    Glaucoma detection method 3: optic nerve head parameters and the DDLS scale

    Evaluating the optic nerve head (ONH) is essential. OCT enables automated assessment of optic disc area, cup-to-disc ratio (C/D), cup volume, rim area, and the lamina cribrosa.

    Glaucoma oct assessment

    The Disc Damage Likelihood Scale (DDLS) classifies glaucomatous ONH changes based on the thinnest radial rim width or, if absent, the extent of rim loss. Unlike the C/D ratio, DDLS adjusts for disc size. When combined with OCT, DDLS significantly enhances objective clinical assessment.

    In high myopia, automatic ONH segmentation often misclassifies anatomy. Here, newer deep learning–based segmentation models improve accuracy.

    Evaluating the optic nerve head (ONH)

    Glaucoma detection method 4: OCTA

    OCTA enables evaluation of:

    • Vessel density in the peripapillary region
    • Optic nerve and macular vascularization
    • Retinal vs. ONH perfusion in both eyes

    OCTA for early glaucoma detection

    Studies confirm that reduced vessel density correlates with RNFL loss and visual field deterioration, and often precedes both.

    Why is OCT glaucoma monitoring important after diagnosis?

    Glaucoma can progress even with stable intraocular pressure (IOP), making regular structural assessment of the optic nerve and inner retina crucial for therapy adjustment.

    Glaucoma OCT is not only a diagnostic tool but also the primary method for monitoring glaucomatous damage. Unlike functional tests, OCT can detect even minimal RNFL or GCL thinning—months or even years before visual field loss appears. With serial measurements and built-in analytics, OCT allows clinicians to track progression rates and identify high-risk patients.

    What are the primary methods to monitor glaucoma progression?

    Two primary methods to monitor glaucoma progression are event-based analysis and trend-based analysis.

    Glaucoma progression monitoring method 1: event-based analysis

    This method compares current scans with a reference baseline, identifying whether RNFL or GCL thinning exceeds expected variability.

    📌 Example: Heidelberg Eye Explorer (HEYEX) highlights suspicious areas in yellow (possible loss) or red (confirmed loss).

    Limitations include sensitivity to artifacts, image misalignment, and segmentation quality. A high-quality baseline scan is essential.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    Glaucoma progression monitoring method 2: trend-based analysis

    This approach accounts for time. The software plots RNFL/GCL thickness trends over time in selected sectors or globally and calculates the rate of progression.

    Examples:

    • RNFL thinning >1.0 μm/year is clinically significant.
    • Thinning >1.5 μm/year indicates active progression.

    It also accounts for age-related changes, helping differentiate physiological vs. pathological decline.

    What does a visual assessment of glaucoma progression involve?

    Visual assessment of glaucoma progression involves qualitative analysis of B-scans and colour maps (RNFL deviation map, thickness map).

    Here’s what is evaluated during a glaucoma OCT assessment:

    • Focal RNFL thinning (localised defects)
    • Changes in the neuroretinal rim
    • Alterations in ONH cupping
    • GCL/GCIPL comparison (superior vs. inferior) on macular maps
    • New segmentation artifacts (may mimic progression)

    Visual glaucoma OCT analysis

    What OCT glaucoma findings indicate true progression?

    Five OCT glaucoma findings indicate true progression:

    • RNFL thinning >10 μm in one sector or >5 μm in several sectors
    • New or worsening GCL asymmetry (yellow to red colour shift)
    • Emerging or expanding RNFL defects on colour maps
    • Increasing C/D ratio with concurrent rim thinning
    • New localised areas of vessel density loss on OCTA

    Particular attention should be paid to the inferotemporal and superotemporal RNFL sectors, where 80% of early changes occur.

    How frequently should glaucoma OCT monitoring be done?

    According to the AAO and EGS, the recommended frequency for glaucoma OCT monitoring is as follows:

    • High-risk patients: every 6 months

    • Stable patients: once a year

    • For trend analysis: at least 6–8 scans over 2 years to ensure statistical reliability

    Looking ahead, broader use of AI for glaucoma is expected to support earlier and more accurate detection, while also reducing false positives.

    What additional tools are used to monitor glaucoma treatment?

    While OCT is essential for detecting structural changes, a comprehensive glaucoma assessment requires a multimodal approach. Additional tools used to monitor glaucoma treatment include perimetry, tonometry, optic disc fundus photography, and gonioscopy.

    Perimetry or visual field testing

    Functional assessment of the optic nerve remains essential. Standard Automated Perimetry (SAP), typically using Humphrey Visual Field Analyzer protocols (24-2, 30-2, and 10-2), is the most widely used method.

    Key perimetric indices include:

    • MD (Mean Deviation): shows the average deviation from normal values

    • PSD (Pattern Standard Deviation): highlights localized defects

    • VFI (Visual Field Index): summarises global visual function; useful for tracking progression

    • GHT (Glaucoma Hemifield Test): provides automated analysis of field asymmetry

    However, structural and functional changes don’t always align. In 30–50% of cases, structural changes—such as RNFL thinning on OCT—precede detectable visual field defects. In other cases, the opposite occurs.

    As a result, current best practice relies on integrated OCT and perimetry analysis to correlate the location of damage and monitor glaucoma progression more precisely.

    Combined OCT and perimetry remains the gold standard for glaucoma progression monitoring.

    Tonometry

    Intraocular pressure (IOP) is the only clearly modifiable risk factor associated with both glaucoma onset and progression. Even elevated IOP within the upper-normal range can be linked to structural and functional decline.

    Goldmann applanation tonometry continues to be the gold standard for IOP measurement.

    Assessment should not be based on a single IOP reading. Diurnal fluctuations are an independent risk factor, particularly in cases of normal-tension glaucoma.

    Optic disc fundus photography

    Although subjective, fundus imaging is still valuable for documenting glaucomatous changes, especially in ambiguous or borderline cases. Unlike OCT, it does not provide quantitative data, but it helps visualise morphological changes over time.

    What to assess:

    • Progressive disc cupping

    • Changes in neuroretinal rim shape or colour

    • Disc margin haemorrhages (associated with faster RNFL thinning and visual field loss)

    • Inter-eye comparisons

    Gonioscopy

    Gonioscopy is used to evaluate the anterior chamber angle, especially to exclude angle-closure, pigmentary, or pseudoexfoliative glaucoma. It also helps identify neovascularisation, trabecular meshwork abnormalities, and other angle anomalies.

    Final note: To form a complete clinical picture, structural findings, functional test results, and IOP measurements must all be considered together.

    Patient education: a key to successful glaucoma management

    Effective glaucoma management relies not only on accurate diagnosis and appropriate treatment but also on patient adherence to monitoring and therapy.

    The challenge:

    In the early stages, glaucoma is typically asymptomatic. As a result, many patients underestimate its seriousness. This often leads to poor compliance, missed follow-up appointments, and self-discontinuation of prescribed medications.

    The goals of patient education:

    • Clearly explain that glaucoma progresses silently but can lead to irreversible blindness if left untreated.

    • Use real-life examples—such as before/after OCT scans and visual field comparisons—to demonstrate disease progression.

    • Educate patients to recognise warning signs or complications (e.g., changes in vision, eye pain).

    • Visualise disease progression with AI tools that display RNFL loss and predict future risk.

      AI Ophthalmology and Optometry | Altris AI
      AI Decision Support for OCT

      Try Altris AI for free

      Book intro + free trial Get a brochure

    Educational resources may include:

    • Printed brochures with simple, patient-friendly language

    • Videos featuring actual OCT images and explanations

    • In-clinic discussions between doctor and patient

    • Telemedicine platforms offering personalised reminders and follow-up prompts

    According to the AAO, patients with a basic understanding of glaucoma are 2.5 times more likely to adhere to treatment and attend routine check-ups.

    Conclusion

    OCT now plays a central role in both diagnosing and monitoring glaucoma. Its ability to detect subtle structural changes—before measurable functional loss—makes early intervention possible and increases the likelihood of preserving vision.

    Key biomarkers include RNFL, GCC, and ONH parameters. Event-based and trend-based analyses, colour-coded deviation maps, and OCTA for assessing microcirculation give ophthalmologists reliable, quantitative tools for evidence-based decision-making.

    When combined with functional testing and individual risk profiling, these tools support a personalised approach to glaucoma care.

    However, technology alone is not enough. Accurate interpretation—and strong patient understanding—are equally essential. When patients fully grasp the nature of the disease and the role of OCT in managing it, adherence improves and outcomes are better.

    OCT is not just a diagnostic tool; it is the foundation of an integrated, evidence-based strategy for glaucoma management, from initial screening through to long-term monitoring and treatment optimisation.

  • Inside the Power Hour: Altris AI’s Take on AI Innovation in Eye Care

    Innovation in Eye Care: Interview with Grant Schmid
    AI Ophthalmology and Optometry | Altris AI Grant Schmid
    3 min

    Inside the Power Hour: Altris AI’s Take on AI Innovation in Eye Care

    Our Vice President of Business Development, Grant Schmid, took part in The Power Hour podcast to discuss how AI and automation are shaping the future of patient experience. We turned that conversation into an interview and pulled out the most compellinsubtle anatomical g insights on tech-enabled practice growth and innovation in eye care.

    Eugene Shatsman: Can you start by introducing Altris AI and what problem you’re solving in eye care?
    Grant Schmid: Altris AI was founded in 2017 in Chicago, with the University of Chicago as our first investor. But most of our team — and the heart of our development — is based in Ukraine.

    We focus on AI for OCT analysis. Our goal is to provide decision support that helps identify over 70 different pathologies and biomarkers, no matter what OCT device a clinic uses. The idea is to speed up image interpretation, ensure nothing is missed, and support doctors in delivering top-quality care.

    Decision support regardless OCT device

    Eugene: What initially inspired the development of Altris AI?
    Grant: Our co-founder is a retina specialist from Kyiv. She wanted a way to improve the referral process and increase the OCT knowledge of those referring patients to her. That’s how the idea of a clinical decision support platform was born.

    We actually started with an educational OCT app that you can still download — many doctors come to our booth at trade shows not realizing that the app is also part of what we’ve built.

    Eugene: What does a typical OCT workflow look like with and without Altris AI?
    Grant: In many modern practices, every patient now gets an OCT. It’s used to screen for diseases like AMD, glaucoma, or diabetic retinopathy. But subtle anatomical differences can confuse even experienced clinicians.

    AI Ophthalmology and Optometry | Altris AI

    Learn more about Altris AI’s Decision Support for OCT analysis

    Register in a Demo Get a Brochure

     

    With Altris AI, the doctor gets an analysis almost immediately — color-coded overlays, pathology markers, optic disc assessments, all in one place. This speeds up the review process and supports clinical decision-making without disrupting workflow.

    Eugene: What do you say to clinicians who say, “I already know how to read OCTs — why do I need AI?”
    Grant: Many doctors are confident in interpreting OCTs, and that’s great. But the value isn’t just in identifying disease — it’s in validation and patient education.

    We’re not here to replace what doctors do. Altris AI validates what you already know and makes it easier to communicate with patients. We highlight what might be missed, and we provide visual tools that help explain findings clearly — which leads to better patient understanding and trust.

    Visualize OCT Analysis

    Eugene: Can you give an example of how this helps patient education?
    Grant: Absolutely. Let’s take glaucoma. Many patients on drops don’t feel or see any change, so they think, “Why bother?” But if you can show them a progression or show that things are stable, it becomes real to them.

    We launched an Optic Disc Analysis feature that lets you compare up to eight past visits side-by-side. So when a patient asks, “Is this working?” you can say, “Yes, here’s the proof.” That drives adherence and builds trust.

    Eugene: Are practices today ready to embrace AI-based tools? Or are they still cautious?
    Grant: There’s a lot of curiosity, a lot of interest. Some are still figuring out how to implement AI in a way that makes sense for them.

    But AI is everywhere now — whether it’s in search engines, smartphones, or how we shop. Patients expect that kind of intelligence in their healthcare, too. In fact, a 67-year-old tugboat captain with AMD once called me asking about our software and offered to pay for his doctor’s subscription. That tells you how fast expectations are changing.

    Eugene: Can AI actually improve the patient experience beyond just diagnosis?
    Grant: Absolutely. Patients want to understand what’s happening with their health. When you can show them their scan results with overlays and simple visuals, they feel included in the process.

    It’s not just about detecting disease, it’s about building trust. Clear visual communication boosts confidence, reduces anxiety, and increases compliance.

    AI Ophthalmology and Optometry | Altris AI

    Learn more about Altris AI’s Decision Support for OCT analysis

    Register in a Demo Get a Brochure

     

    Eugene: Some fear AI will replace clinicians. What’s your perspective on that?
    Grant: That’s one of the biggest myths out there. AI won’t replace clinicians — it enhances what they do.

    We’re not cleared to diagnose. We’re a decision-support tool. Doctors still make the final decision, but we give them more data, faster and more clearly. Human clinical judgment is still irreplaceable — we just help sharpen it.

    AI Decision Support Tool

    Eugene: What barriers are you seeing when introducing Altris AI to new practices?
    Grant: The main one is comfort — many doctors feel confident reading OCTs and don’t immediately see the need.

    The other is simply awareness. We’re a fast-growing startup, but many still don’t know about us. That’s why opportunities like this podcast are important.

    In terms of logistics, there’s no barrier. Altris AI is web-based, nothing to install, and takes just 20 minutes to learn. We’re designed to be plug-and-play.

    Eugene: If a practice wants to engage patients more using AI in eye care, how should they approach it?
    Grant: One great idea is to run a recall campaign for patients who haven’t had an OCT in the last 6 or 12 months. Something like, “We now use AI to enhance your OCT scan — come see how it works.”

    AI is a differentiator. It shows your clinic is modern, patient-focused, and using the best available tools.

    Eugene: What do you think the optometry practice of 2028 will look like?
    Grant: I think you’ll see AI systems talking to each other. Imagine our platform detecting something on a scan and automatically triggering a patient reminder or a suggested follow-up.

    There will be less manual work and more focus on human care. The doctor will be able to walk in and focus completely on the patient — the AI will handle the background tasks like charting or longitudinal comparisons.

    Ultimately, better care, less burnout.

    Eugene: What’s one myth you’d like to bust about AI in optometry?
    Grant: That AI will replace people. It won’t. What it does is make you more effective. You’ll have sharper insights, clearer visuals, and faster decision-making — all without replacing your clinical experience.

    Eugene: And finally, how can practices get started with Altris AI?
    Grant: Just go to  altris.ai or connect with us on LinkedIn. We offer live demos and can use your real OCT scans to show exactly how it works.

    There’s no software to install, no major investment, and we operate on a subscription basis — so there’s no long-term risk. If you’re curious, reach out. We’d love to show you what’s possible.

    Watch the complete Power Hour podcast episode below for more insights on AI, automation, and innovation in eye care:

     

  • Dry AMD Treatment: How to Slow Progression with Modern Approaches

    Dry AMD Treatment: Modern Approaches
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    5 min.

    Dry AMD Treatment: How to Slow Progression with Modern Approaches

    Table of Contents

    1.What are the dry macular degeneration treatment breakthroughs?

    2.How to monitor dry AMD progression with OCT?

    3.What are the challenges of dry age-related macular degeneration monitoring?

    4.How do I organize efficient dry AMD monitoring in my clinic?

    5.Why are optometrists on the front line of early AMD detection?

    6.How can OCT insights help support patients emotionally?

    7.Conclusion

    For many years, dry or non-exudative AMD was considered untreatable. Most efforts were focused on treating the wet or exudative AMD with anti-VEGF drugs. However, this paradigm has recently shifted.

    The first FDA-approved drugs appeared recently to treat geographic atrophy (GA), which affects 30% of patients with dry AMD. Additionally, new physiotherapeutic methods, such as multi-wavelength photobiomodulation, have emerged.

    Geographic atrophy (GA) is an advanced, irreversible form of dry age-related macular degeneration (AMD). It develops when areas of the retina, the light-sensitive tissue at the back of the eye, undergo cell death (atrophy), causing progressive vision loss. 

    However, even the best dry AMD treatment is ineffective without an objective way to measure its success. Updated guidelines suggest advanced tools for monitoring progression, and optical coherence tomography (OCT) is at the core of this process.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    What are the dry macular degeneration treatment breakthroughs?

    The dry macular degeneration treatment breakthroughs include multiwavelength photobiomodulation, FDA-approved injectable drugs, and AREDS 2-based supplements. Unlike older recommendations focused on reducing risk factors — quitting smoking, managing blood pressure, and eating a healthy diet — these new approaches for dry AMD combine prevention with active treatment strategies to slow the progression of GA.

    1. Dry AMD treatment using multiwavelength photobiomodulation

    Multiwavelength photobiomodulation for AMD is a promising new treatment. It uses specific light wavelengths (in the red and near-infrared spectrum, ~590 to 850 nm) to reduce oxidative stress, inflammation, and pigment epithelial cell death in the retina.

    One of the most well-known systems used for this approach is Valeda Light Therapy, which delivers controlled multiwavelength light to the retina in a non-invasive manner.

    The LIGHTSITE III clinical trial (2022) showed that photobiomodulation significantly slowed the decline in visual acuity and reduced the rate of GA expansion.

    Limitations:

    • Limited long-term data (only 3–5 years available)
    • Requires expensive equipment and trained personnel
    • Unclear effectiveness in late-stage GA

    Multiwavelength photobiomodulation

    2. Dry AMD treatment using FDA-approved injectable drugs

    AMD injection drugs approved by the FDA include Izervay and Syfovre.

    • Izervay (avacincaptad pegol): A C5 complement protein inhibitor that targets the complement cascade involved in chronic retinal inflammation and damage. Izervay, approved for geographic atrophy secondary to dry AMD, has demonstrated a reduced rate of GA progression in clinical trials.
    • Syfovre (pegcetacoplan): A C3 complement inhibitor that blocks the central component of the complement system to reduce inflammation. Syfovre is the first FDA-approved treatment for GA that targets complement component C3, showing a clinically meaningful slowing of GA progression.

    Both dry macular degeneration injections have shown the ability to slow GA progression compared to placebo. Although they do not restore vision, slowing vision loss is a meaningful clinical outcome.

    Usage considerations:

    • Administered via intravitreal injections, usually monthly or every other month
    • Doctors need training; patients must be informed about risks (e.g., endophthalmitis, increased IOP)
    • Cost and availability may be barriers

    Intravitreal injections

    3. Dry AMD treatment using AREDS 2-based supplements

    AREDS 2 supplements are antioxidant supplements containing lutein, zeaxanthin, vitamins C and E, zinc, and copper. They can reduce the risk of progression to late stage AMD by around 25% over five years, according to the AREDS 2 study.

    Pros:

    • Easily accessible
    • Low risk of side effects
    • A strong evidence base

    Cons:

    • Does not directly affect GA
    • Cannot replace active treatments like injections or photobiomodulation

    How to monitor dry AMD progression with OCT?

    To monitor dry AMD progression effectively, OCT is essential. It is the gold standard for tracking structural changes in the retina. Without OCT, clinicians are essentially flying blind when it comes to assessing disease progression and predicting geographic atrophy (GA) development.

    What are the key monitoring parameters of AMD progression?

    The key monitoring parameters of AMD progression include GA area, drusen, and distance to fovea.

    1. GA area

    This is the main metric when using intravitreal eye injections. Modern OCT systems provide GA measurements in mm², allowing doctors to objectively track changes over time.

    Even if patients don’t notice symptoms, a growing GA area signals disease progression. In FDA trials for Syfovre and Izervay, the GA area was the primary endpoint.

    Tracking GA progression

    2. Drusen

    Drusen vary in number, size, and shape. A reduction or disappearance of drusen on OCT may seem like an improvement, but could actually indicate a transition to the atrophic stage. Regular monitoring helps detect this early.

    3. Distance to fovea

    The closer GA is to the fovea, the greater the risk of sudden vision loss.

    Early detection enables:

    • Referral to an ophthalmologist
    • Timely conversations about potential vision loss

    What are OCT outputs for AMD progression monitoring and communication?

    Useful OCT outputs for AMD progression monitoring and communication are heat maps and progress charts.

    1. Heat maps

    Modern OCT systems use color-coded heat maps to show pigment epithelium thickness and drusen distribution. This visual format helps in several ways:

    • Makes interpretation easier for clinicians
    • Helps patients better understand their condition
    • Encourages patients to stay engaged with treatment

    In clinical practice, it serves as a highly effective communication tool.

    AI Ophthalmology and Optometry | Altris AI
    AI Decision Support for OCT

    Try Altris AI for free

    Book intro + free trial Get a brochure

     

    2. Progress charts

    Most OCT systems can compare results across visits

    • For doctors: Helps guide treatment decisions
    • For patients: Provides visual proof of stabilization or worsening

    Dry Macular Degeneration Treatment Breakthroughs

    The role of objective evidence in patient treatment

    Patients may question the value of long-term treatments or costly procedures.

    OCT is the gold standard for patient motivation. When patients see actual changes, they’re more likely to agree to treatment.

    What are the challenges of dry age-related macular degeneration monitoring?

    Monitoring dry AMD presents technical, organizational, and psychological challenges. Doctors of all levels of experience should be aware of them.

    1. Invisible microchanges

    Early atrophy or drusen changes may be subtle. Patients may not notice them due to eccentric fixation or slow adaptation.

    Without OCT, doctors may miss early GA, delaying treatment.

    It is necessary to perform OCT even when there are only minor changes in visual acuity or if the patient reports image distortion (metamorphopsia).

    2. Subjective assessment

    Ophthalmoscopy reveals only obvious changes. Subtle drusen or early atrophy might be missed.

    Relying on patients’ complaints is risky — many don’t notice issues until it’s too late.

    That’s why even small optical practices should establish clear referral pathways for OCT exams.

    3. Unnecessary referrals

    Optometrists or primary care doctors often refer patients to ophthalmologists “just in case,” because they don’t have access to OCT or lack experience interpreting it.

    This puts unnecessary strain on specialists. In many cases, nothing new is done after the exam because there are no previous images for comparison.

    4. Limitations of OCT devices

    Not all OCT devices measure GA or track drusen equally well. Older models may lack automated measurements of atrophy area.

    In some cases, referral to a center with advanced OCT is necessary.

    Variety of OCT devices

    How do I organize efficient dry AMD monitoring in my clinic?

    Here’s how you can organize efficient monitoring in your clinic:

    Tip 1. Create a baseline chart

    During the first visit, perform a detailed OCT scan to measure GA area, evaluate drusen, and record distance to the fovea. Save the images or print them for future comparison.

    Tip 2. Monitor frequently

    • Early stages: every 6–12 months
    • With GA: every 3–6 months
    • When treated with intravitreal injections: before each injection

    A reminder system helps with patient compliance.

    Tip 3. Standardize your protocol

    Use the same scanning protocols every time to reduce variability.

    Tip 4. Use OCT software tools

    Modern systems offer:

    • Image comparison
    • Automatic GA area calculation
    • Heat map visualization

    Tip 5. Communicate clearly with patients

    Use simple language:

    • These are areas of atrophy, and we’re measuring them
    • These bright spots are drusen we’re monitoring
    • The goal is to slow the growth of these areas

    Educated patients are more engaged in their care.

    Why are optometrists on the front line of early AMD detection?

    Optometrists play a key role in spotting the early signs of AMD, as they are often the first point of contact in eye care.

    They perform initial screenings, provide guidance on lifestyle and supplements, and ensure regular OCT monitoring.

    If drusen, pigment epithelial changes, or signs of GA are present, they refer patients to ophthalmologists for confirmation and treatment planning.

    How can OCT insights help support patients emotionally?

    Explaining a chronic, progressive condition like AMD to elderly patients can be difficult. Motivating them to return for regular follow-ups is often even harder.

    Many ask, “Why bother if it can’t be cured?”

    OCT insights can support both understanding and emotional reassurance. A thoughtful approach may include:

    • Explaining that treatment helps slow vision loss

    • Emphasising their active role in preserving sight

    • Using OCT scans to show visual proof of stability or progress

    Explaining a chronic progressive condition to patients

    Conclusion

    Modern dry AMD treatment is no longer a dead end. With FDA-approved medications, photobiomodulation, and effective supplements, optometrists can significantly impact disease progression.

    But none of this works without quality monitoring. OCT reveals what the eye can’t see and helps guide clinical decisions while motivating patients.

    The ultimate goal is to partner with patients in preserving their vision. This isn’t a one-time visit—it’s a long-term commitment. The stronger the support, the better the chances of maintaining central vision and seeing meaningful results from dry AMD treatment.

  • AItris AI for Buchanan Optometrists

    AI Ophthalmology and Optometry | Altris AI Mark Braddon
    3 min.

    Buchanan Optometrists and Audiologists is no ordinary eye-care center.

    The Association of Optometrists (AOP) estimates 17,500 registered optometrists working across roughly 6,000 practices in the UK. The UK Optician Awards recognise the best in the UK Optical industry.  To even make the top 5 is our equivalent of an Oscar nomination! They are the only practice in the UK to consistently make the top 5 since 2008. Buchanan Optometrists describe themselves as innovators who “continually push boundaries.”

    Their list of awards speaks for itself:

    • 2012 – National Optician Award for Premium Lens Practice of the Year
    • 2013 – Luxury Eyewear Retailer of the Year and Premium Lens Practice of the Year
    • 2013 – Winner at the UK Optician Awards
    • 2015–2016 – Best UK Independent Practice
    • 2017–2018 – Optometrist of the Year, with Alisdair Buchanan named the top optometrist in the UK
    • 2023–2024 – Best Independent Optician and Best Technology Practice

    And this list is not finished, as Alisdair Buchanan, the Owner and the Director of the center, is investing in their growth continuously.

    Buchanan Optometrists are being recognized for their achievements

    With a track record like this, it’s no surprise that Buchanan Optometrists was among the first to adopt AI for Decision Support in OCT. AI is rapidly becoming a vital part of modern eye care, and leading centers are already embracing it.

    Mark Braddon, Altris AI VP of Clinical Sales, sat down with Alisdair Buchanan, the owner and director of the practice, to talk about his experience with AI and what it means for the future of optometry.

    Mark Braddon: You’ve been working with OCT for years. What changed in your practice after bringing in Altris AI Decision Support for OCT?

    Alisdair Buchanan, Owner: As someone already confident in interpreting scans, I didn’t need help understanding OCT—but Altris provides something even more valuable: a kind of second opinion. It supports my clinical decisions and offers an added layer of reassurance, particularly in borderline or complex cases. That’s not just helpful—it’s powerful.

    I didn’t think our OCT assessments could improve much—until we started using Altris AI. It’s not just an upgrade; it’s become an indispensable part of delivering modern, high-quality eye care. Altris AI has significantly enhanced the way we interpret OCT scans. What used to require prolonged focus and cross-referencing now takes moments, without sacrificing accuracy or depth. The system analyses images with incredible precision, highlighting subtle pathological changes that are often time-consuming to detect, especially during a busy clinic day.

    Mark Braddon: What was the first real benefit you noticed after bringing  Altris AI into your day-to-day routine?

    Alisdair Buchanan, Owner: One of the most immediate benefits has been in patient communication. The platform generates clear, colour-coded visuals that make explaining findings effortless. Instead of trying to talk patients through grainy greyscale images, we can now show them precisely what we’re seeing. It’s improved understanding, reduced anxiety, and increased trust in the care we’re providing.

    Mark Braddon: Was it easy to fit AI Decision Support into your OCT workflow? How easy did you find integrating Altris AI?

    Alisdair Buchanan, Owner: Integration was seamless—no faff, no friction. It fits naturally into our existing workflow, with scans uploaded and analysed within seconds. It’s helped us work more efficiently, without compromising the thoroughness our patients expect.

    In short, Altris AI has sharpened our clinical edge and strengthened the service we offer. It doesn’t replace experience—it enhances it. And that, for me, is the real value.

    Mark Braddon: In your experience, where has AI been the most helpful in clinical work?

    Alisdair Buchanan, Owner: The main area where it shines is in picking up early macular changes, particularly dry AMD. Things like drusen or subtle changes in the outer retinal layers, which could easily be missed at a glance, are brought to the surface immediately.

    It’s also been handy with diabetic patients. Just having that extra layer of input to flag microstructural changes helps us stay ahead of progression.

    We’ve also started using it with glaucoma suspects. While our Heidelberg Spectralis remains our go-to for structural monitoring, having the RNFL analysis from Altris adds a checkpoint. I’d never base a referral purely on it, but it’s nice to have a second opinion—even if it’s an AI one.

    Mark Braddon: Has AI Decision Support changed how you handle borderline or difficult-to-call cases?

    Alisdair Buchanan, Owner: I’d say it’s given us more confidence, particularly in the grey areas—those borderline cases where you’re not quite sure if it’s time to refer or just monitor a bit more closely. With AMD, for example, it has helped us catch early signs of progression and refer patients before things become urgent.

    And for glaucoma, again, it’s not replacing anything we do—it’s just another tool we can lean on. Sometimes it confirms what we already thought, and other times it nudges us to look again more carefully.

    Mark Braddon: How has using AI impacted your conversations with patients during consultations?

    Alisdair Buchanan, Owner: One of the unexpected benefits has been how much it helps with patient conversations. We show the scans on-screen during the consultation, and the colour overlays make things much easier to explain, especially with older patients. They can see what we’re talking about, which makes the whole thing feel more real and less abstract.

    They often say, “Ah, now I understand,” or “So that’s what you’re looking at.” It’s not about dazzling them with tech—it just helps make the discussion more transparent and more reassuring.

    Mark Braddon: Some professionals worry that AI might replace human judgment. How do you see its role in clinical decision-making?

    Alisdair Buchanan, Owner: I don’t see Altris AI —or any AI—as a threat to what we do. It’s not here to replace us. We still make the decisions, take responsibility, and guide our patients. But it does help.

    For me, it’s like having a quiet assistant in the background. It doesn’t get everything right, and I certainly wouldn’t act on it blindly—but it prompts me to pause, double-check, and sometimes spot something I might have missed otherwise. That can only be a good thing.

    In short, Altris AI has sharpened our clinical edge and strengthened the service we offer. It doesn’t replace experience—it enhances it. And that, for me, is the real value.

  • AI for Decision Support with OCT: “Altris AI Gave Me More Certainty in My Clinical Decisions”

    AI for Decision Support for OCT
    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    2 minutes

    AI for Decision Support with OCT: An Interview with Clara Pereira, Optometrist from Franco Oculista

    About Franco Oculista Optometry in Portugal.

    Franco Oculista is the optometry center with a 70-year-old history: its roots date back to the mid-1950s in Luanda, where it was founded by Gonçalo Viana Franco. Having left behind a career in pharmacy, Gonçalo pursued his entrepreneurial vision by opening an optician’s bearing his name in the heart of the Angolan capital. Driven by a thirst for knowledge and a deep sense of dedication, he turned his dream into reality. With a commitment to professionalism and a forward-thinking approach, he integrated the most innovative technologies available at the time. This blend of passion, expertise, and innovation established Franco Oculista as a benchmark for quality and excellence in the field. In 1970s, the family returned to Portugal and opened the new FRANCO OCULISTA space on Avenida da Liberdade.

    How do Franco Oculista describe their mission?

    “Through individualized and segmented service, we seek to respond to the needs of each client. We combine our knowledge with the most sophisticated technical equipment and choose quality and reliable brands. We prioritize the evolution of our services and, for this reason, we work daily to satisfy and retain our customers with the utmost professionalism.”

    Clara Pereira is one of the optometrists at Franco Oculista and has been an optometrist for nearly two decades. Based in a private clinic in Portugal, she brings years of experience and calm confidence to her consultations. We talked with her to learn how her clinical practice has evolved, particularly since integrating OCT and, more recently, Altris AI – AI for Decision Support with OCT.

    Altris AI: Clara, can you tell us a bit about your daily work?

    Clara: “Of course. I’ve been working as an optometrist for 19 years now. My practice is quite comprehensive—I assess refractive status, binocular vision, check the anterior segment with a slit lamp, measure intraocular pressure, and always examine the fundus.

    Clara: “In Portugal, we face limitations. We’re not allowed to prescribe medication or perform cycloplegia, so imaging becomes crucial. I rely heavily on fundus photography and OCT to guide referrals and detect early pathology.”

    Altris AI: How central is OCT diagnostics to your workflow?
    Clara: “OCT is substantial. I perform an OCT exam on nearly every patient, on average, eight OCT exams per day. It’s an essential part of how I gather information. With just one scan, I can learn so much about eye health.”

    Altris AI: What kind of conditions do you encounter most frequently?
    Clara: “The most common diagnosis is epiretinal membrane—fibrosis. But I also manage patients with macular degeneration and other retinal pathologies. Having the right tools is key.”

    Altris AI: And what OCT features do you use the most?
    Clara: “I regularly use the Retina, Glaucoma, and Macula maps. But if I had to choose one, the Retina Map gives me the most complete picture. It’s become my go-to.”

    Altris AI: You’ve recently started using Altris AI. What has that experience been like?
    Clara: “At first, I didn’t know much about it. But when Optometron introduced Altris AI to me—a company I trust—I didn’t hesitate. And I’m glad I didn’t. From the beginning, it felt like a natural extension of my clinical reasoning.

    Clara: “Altris AI gives me an extra layer of certainty. It helps me extract more from the OCT images. I usually interpret the scan myself first, and then I run it through the platform. That way, I validate my thinking while also learning something new.”

    Altris AI: Have any standout cases where Altris AI made a difference?

    Clara: “Yes. I’ve had a few. One was a case of advanced macular degeneration, in which the AI visualization really helped me explain the condition to the patient. Another was using anterior segment maps for fitting scleral lenses—Altris was incredibly useful there, too. I do a lot of specialty lens fittings, so that was a big advantage.”

    Altris AI: Would you recommend Altris AI to your colleagues?

    Clara: “I would recommend Altris AI to my colleagues. For me, it’s about more than just the diagnosis. It’s about feeling confident that I’m seeing everything clearly and giving my patients the best care possible. Altris AI helps me do exactly that.”

    Why This Matters: Altris AI in Real Practice

    Clara’s story reflects the real value of AI in optometry—not as a replacement for clinical judgment, but as a powerful companion. With every OCT scan, she strengthens her expertise, improves diagnostic accuracy, and gives her patients the reassurance they deserve.

    Whether identifying early signs of fibrosis, supporting complex scleral lens fittings, or acting as a second opinion, Altris AI seamlessly fits into the modern optometrist’s workflow, making every scan more meaningful.

    AI for Decision Support with OCT: Transforming Retinal Diagnostics

    Artificial Intelligence (AI) is revolutionizing the field of ophthalmology, particularly through its integration with Optical Coherence Tomography (OCT). OCT is a non-invasive imaging technique that captures high-resolution cross-sectional images of the retina, enabling early detection and monitoring of various ocular conditions. However, interpreting these scans requires time, expertise, and consistency—factors that AI-based decision support systems are uniquely positioned to enhance.

    Altris AI (AI for OCT decision support platform) analyzes thousands of data points across B-scans, automatically detecting retinal pathologies, quantifying biomarkers, and identifying patterns that may be subtle or overlooked by the human eye. By providing objective, standardized assessments, Altris AI reduces diagnostic variability and improves clinical accuracy, especially in busy or high-volume practices.

    For optometrists and ophthalmologists, AI acts as a second opinion, flagging early signs of diseases such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma. It streamlines workflows by highlighting areas of concern, prioritizing cases that require urgent attention, and offering visual explanations that are easy to communicate to patients.

    Moreover, Altris AI enableS longitudinal tracking of pathology progression. By comparing OCT scans over time ( even from various OCT devices), clinicians can monitor subtle changes in drusen volume, retinal thickness, supporting timely clinical decisions and tailored treatment strategies. The integration of AI into OCT interpretation not only enhances diagnostic confidence but also supports evidence-based care, early intervention, and improved patient outcomes. As AI continues to evolve, it will play a vital role in advancing precision medicine in ophthalmology, empowering eye care professionals with tools that are fast, reliable, and scalable.

    In essence, AI for OCT decision support is not replacing clinical expertise; it is augmenting it, elevating the standard of care through speed, accuracy, and actionable insights.

  • Best AI for OCT: 10 Essential Features Your Platform Must Have 

    best AI for OCT
    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    8 min.

    Best AI for OCT: 10 Essential Features Your Platform Must Have 

    So you’ve decided to trial AI for OCT analysis and wondering how to choose among all the available platforms. To save you some time, we’ve collected 10 most essential criteria according to which you can assess all existing AI platforms. Using this criteria you will be able to make an informed and rational choice.

    As an ophthalmologist, I am interested in finding innovative and modern approaches that could help me to enhance the workflow and improve patient outcome as a result.Analyzing various platforms, I realized that these 10 criteria are crucial for the right choice.

    1. Regulatory Compliance and Clinical Validation

    In healthcare, safety is always first. Regulatory approval and clinical validation are essential for AI-powered platforms for OCT scan analysis.

    The best AI OCT platforms should meet regulatory standards set by authorities such as the FDA, HIPAA, CE, and ISO. 

    Adhering to regulatory guidelines enhances credibility and fosters trust among healthcare professionals. Check if the AI for OCT analysis tool has all these certificates in place and if they are valid.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

     

    2.Wide range of biomarkers and pathologies detected

    Some AI for OCT platforms concentrate on certain pathologies, like  Age-Related Macular Degeneration (AMD) or Diabetic Retinopathy, because of the prevalence of these conditions among the population. It mostly means that eye care specialists must know in advance that they are dealing with the AMD patient to find the proof of AMD on the OCT.

    The best AI for OCT tools should have a wide variety of biomarkers and pathologies, including rare ones that cannot be seen daily in clinical practice, such as central retinal vein and artery occlusions, vitelliform dystrophy, macular telangiectasia and others. Altris AI, the leader of OCT for AI analysis, detects 74 biomarkers and pathologies as of today. 

    best AI for OCT

    3.Cloud-Based Data Management and Accessibility

    To ensure seamless integration into clinical workflows, the AI OCT platform should offer cloud-based data management and accessibility. Cloud storage allows for easy retrieval of patient records, remote consultations, and multi-location access. Secure cloud computing also enhances collaboration between ophthalmologists, optometrists, and researchers by enabling data sharing while maintaining compliance with data privacy regulations such as HIPAA and GDPR. 

    Many clinics have strict policies regarding patient data storage as well: it is crucial that the data is stored on the servers in the region of operation. If the clinic is in EU, the data should be stored in the EU.

    4.Real-world usage by eye care specialists

    When choosing the best AI for OCT analysis, real-world usage by eye care specialists is the most critical factor. Advanced algorithms and high accuracy metrics mean little if the AI is not seamlessly integrated into clinical workflows and actively used by optometrists and ophthalmologists. There are thousands of research models available, but when it comes to the implementation, most of them are not available to ECPs.

    Eye care professionals are not IT specialists. They require AI that is intuitive, fast, and reliable. If a system disrupts their workflow, generates excessive false alerts, or lacks clear explanations for its findings, adoption rates will be low—even if the technology itself is powerful. The best AI solutions are those that specialists trust and rely on daily to enhance diagnostic accuracy, streamline patient management, and support decision-making.

    Moreover, real usage generates valuable feedback that continuously improves the AI. Systems actively used in clinical settings undergo rapid validation, refinement, and adaptation to diverse patient populations. This real-world data is far more meaningful than isolated test results in controlled environments.

    5. Customizable Reporting and Visualization Tools

    Reports are the result of the whole AI for OCT scan analysis that is why customizable and comprehensive reports are a must.

    A high-quality AI OCT platform must offer customizable reporting and visualization tools. Clinicians should be able to adjust parameters, select specific data points, and generate detailed reports tailored to individual patient needs.

    Heatmaps, 3D reconstructions, and trend analysis graphs should be available to help visualize disease progression. These tools improve the interpretability of AI-generated insights and facilitate patient education.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

     

    6.AI for Early Glaucoma Detection

    Glaucoma is a leading cause of irreversible blindness, and since OCT is widely used to assess the retinal nerve fiber layer (RNFL), Ganglion Cell Complex ( GCC), optic nerve head (ONH), AI can significantly enhance early detection and risk assessment.

    Therefore, the best AI for OCT analysis tools have an AI for early glaucoma detection module available to assess the risk of glaucoma especially at the early stage. Moreover, tracking the progression of glaucoma with the help of AI should also be available for eye care specialists.  

    Clear and bright notifications about glaucoma risk are also vital for making AI glaucoma modules easy to use.  AI can provide proactive insights that enable early intervention and personalized treatment plans

    AI to detect glaucoma

    7.User – Friendly Interface and Intuitive Workflow Integration

    A well-designed AI OCT platform should feature a user-friendly interface that integrates seamlessly into existing clinical workflows. 

    It means that even non-tech-savvy eye care specialists should be able to navigate it effortlessly. 

    The interface should be intuitive, reducing the learning curve for healthcare providers. Features such as automated scan interpretation, voice command functionality, and guided step-by-step analysis can enhance usability and efficiency.

    8.Integration with Electronic Health Records (EHRs)

    For a seamless clinical experience, the AI OCT platform should integrate with existing electronic health record (EHR) systems. Automated data synchronization between AI analysis and patient records enhances workflow efficiency and reduces administrative burden. This feature enables real-time updates, streamlined documentation, and easy access to past diagnostic reports.

    9. Universal AI solutions compatible with all OCT devices

    Uf you want to use AI to analyze OCT, this AI should be trained on data received from various OCT devices and therefore should be applicable with various OCT devices. A vendor-neutral AI tool for OCT analysis provides unmatched advantages over proprietary solutions tied to specific hardware. By working seamlessly with multiple OCT devices, it eliminates the need for costly equipment upgrades and ensures broader accessibility across clinics and hospitals.

    This approach also fosters greater innovation, allowing AI models to continuously improve based on diverse datasets rather than being limited to a single manufacturer’s ecosystem. Vendor-neutral solutions integrate effortlessly into existing workflows, reducing training time and boosting efficiency. Clinicians benefit from unbiased, adaptable technology that prioritizes patient outcomes rather than locking users into restrictive ecosystems.

    10. Cost-Effectiveness and Accessibility

    To maximize its impact, an AI-powered OCT platform should be cost-effective and accessible to a wide range of healthcare providers. Affordable pricing models, including subscription-based or pay-per-use plans, can make AI technology available to smaller clinics and developing regions. Accessibility ensures that AI-driven OCT analysis benefits as many patients as possible, improving global eye health outcomes.

    AI Ophthalmology and Optometry | Altris AI
    FDA-cleared AI for OCT analysis

    Try AI for OCT or learn more about it

    Demo Account Get brochure

    Conclusion

    What is the best  AI for OCT scan analysis? The best AI for OCT must be a comprehensive, intelligent, and adaptable platform that enhances diagnostic accuracy, streamlines clinical workflows, and supports proactive eye care. Key features such as high-accuracy automated analysis, multi-modal imaging integration, real-time decision support, cloud-based data management, interoperability, and explainable AI decision-making are crucial for an effective OCT AI system. By incorporating these attributes, AI-driven OCT platforms can revolutionize ophthalmology, enabling early disease detection, personalized treatment planning, and improved patient outcomes. As AI technology continues to advance, its integration with OCT will play an increasingly vital role in shaping the future of eye care.

     

  • Future of Ophthalmology: 2025 Top Trends

    future of ophthalmology
    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    13.03.2025
    12 min read

    Future of Ophthalmology: 2025 Top Trends

    In a recent survey conducted by our team, we asked eye care specialists to identify the most transformative trends in ophthalmology by 2025. The results highlighted several key areas, with artificial intelligence (AI) emerging as the clear frontrunner, cited by 78% of respondents.

    future of Ophthalmology

    However, the survey also underscored the significant impact of optogenetics, novel AMD/GA therapies, and the continuing evolution of anti-VEGF treatments. This article will explore the practical implications of these advancements, providing an overview of how they are poised to reshape diagnosis, treatment, research, and, ultimately, patient outcomes in ophthalmology.

    In this article, we will also discuss Oculomics, a very promising field that is gaining momentum.

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT analysis

    Demo Account Get brochure

    Top AI Technology for Detecting Eye-related Health Risks 2025

    Building upon the survey’s findings, we begin with the most prevalent trend: top AI technology for detecting eye-related health risks in 2025

    future of opthalmology

    AI in Clinical Eye Care Practice

    With the increasing prevalence of conditions like diabetic retinopathy and age-related macular degeneration, there is a growing need for efficient and accurate screening tools. And AI is already valuable for eye-care screening: algorithms can analyze retinal images and OCT scans to identify signs of these diseases, enabling early detection and timely intervention.

    future of ophthalmology

    Source

    AI-powered screening tools can also help identify rare inherited retinal dystrophies, such as Vitelliform dystrophy and Macular telangiectasia type 2. These conditions can be challenging to diagnose, but AI algorithms can analyze retinal images to detect subtle signs that human observers may miss.

    AI also starts to play a crucial role in glaucoma management. Early detection of glaucoma demands exceptional precision, as the early signs are often subtle and difficult to detect. Another significant challenge in glaucoma screening is the high rate of false positive referrals, which can lead to unnecessary appointments in secondary care and cause anxiety for patients, yet delayed or missed detection of glaucoma results in irreversible vision loss for millions of people worldwide. So, automated AI-powered glaucoma analysis can offer transformative potential to improve patient outcomes.

    One example of promising AI technology is Altris AI, artificial intelligence for OCT scan analysis, which has introduced its Advanced Optic Disc (OD) Analysis that provides a comprehensive picture of the optic disc’s structural damage, allowing detailed glaucoma assessment for treatment choice and monitoring.

    AI for Glaucoma Detection

    This OD module evaluates optic disc parameters using OCT, providing personalized assessments by accounting for individual disc sizes and angle of rim absence. Such a tailored approach eliminates reliance on normative databases, making evaluations more accurate and patient-specific.

    Furthermore, it enables cross-evaluation across different OCT systems, allowing practitioners to analyze macula and optic disc pathology, even when data originates from multiple OCT devices. Key parameters evaluated by Altris AI’s Optic Disc Analysis include disc area, cup area, cup volume, minimal and maximum cup depth, cup/disc area ratio, rim absence angle, and disc damage likelihood scale (DDLS).

    future of ophthalmology

     

    AI for Clinical Trials and Research

    AI is revolutionizing clinical trials and research in ophthalmology. One such key application of AI is biomarker discovery and analysis. Algorithms can analyze large datasets of medical images, such as OCT scans, to identify and quantify biomarkers for various eye diseases. These biomarkers can be used to assess disease progression, monitor treatment response, and predict clinical outcomes.

    AI is also being used to improve the efficiency and effectiveness of clinical trials. By automating the process of identifying eligible patients for clinical trials, AI can help researchers recruit participants more quickly and ensure that trials include appropriate patient populations, accelerating the development of new treatments.

    future of ophthalmology

    Algorithms can analyze real-world data (RWD) collected from electronic health records and other sources to generate real-world evidence (RWE). RWE provides valuable insights into disease progression, treatment patterns, and long-term outcomes in everyday clinical settings, complementing the findings of traditional randomized controlled trials.

    Oculomics

    Integrating digitized big data and computational power in multimodal imaging techniques has presented a unique opportunity to characterize macroscopic and microscopic ophthalmic features associated with health and disease, a field known as oculomics. To date, early detection of dementia and prognostic evaluation of cerebrovascular disease based on oculomics has been realized. Exploiting ophthalmic imaging in this way provides insights beyond traditional ocular observations.

    future of ophthalmology

    For example, the NeurEYE research program, led by the University of Edinburgh, is using AI to analyze millions of anonymized eye scans to identify biomarkers for Alzheimer’s disease and other neurodegenerative conditions. This research can potentially revolutionize early detection and intervention for these devastating diseases.

    Another effort spearheaded by researchers from Penn Medicine, Penn Engineering is exploring the use of AI to analyze retinal images for biomarkers indicative of cardiovascular risk. AI systems are being trained on fundus photography to detect crucial indicators, such as elevated HbA1c levels, a hallmark of high blood sugar, and a significant risk factor for both diabetes and cardiovascular diseases.

    future of ophthalmology

    Source

    AI analysis of retinal characteristics, such as retinal thinning, vascularity reduction, corneal nerve fiber damage, and eye movement, has shown promise in predicting Neurodegenerative diseases. Specifically, decreases in retinal vascular fractal dimension and vascular density have been identified as potential biomarkers for early cognitive impairment, while reductions in the retinal arteriole-to-venular ratio correlate with later stages.

    Moving from AI, we now turn to another significant trend identified in our survey:

    Optogenetics

    Optogenetics represents a significant leap forward in ophthalmic therapeutics, offering a potential solution for vision restoration in patients with advanced retinal degenerative diseases, where traditional gene therapy often falls short. While gene replacement therapies are constrained by the need for viable target cells and the complexity of multi-gene disorders like retinitis pigmentosa (RP), optogenetics offers a broader approach.

    future of ophthalmology

    This technique aims to circumvent the loss of photoreceptors by introducing light-sensitive proteins, known as opsins, into the surviving inner retinal cells and optic nerve, restoring visual function through light modulation. This method is particularly advantageous as it is agnostic to the specific genetic cause of retinal degeneration.

    By delivering opsin genes to retinal neurons, the technology enables the precise manipulation of cellular activity, essentially transforming these cells into new light-sensing units. This approach can bypass the damaged photoreceptor layer, transmitting visual signals directly to the brain.

    Several companies are pioneering advancements in this field. RhyGaze, for example, has secured substantial funding to accelerate the development of its lead clinical candidate, a novel gene therapy designed for optogenetic vision restoration. Their efforts encompass preclinical testing, including pharmacology and toxicology studies, an observational study to define clinical endpoints, and a first-in-human trial to assess safety and efficacy. The success of RhyGaze’s research could pave the way for widespread clinical applications, significantly impacting the treatment of blindness globally.

    future of ophthalmology

    Source

    Nanoscope Therapeutics is also making significant strides with its MCO-010 therapy. This investigational treatment, administered through a single intravitreal injection, delivers the Multi-Characteristic Opsin (MCO) gene, enabling remaining retinal cells to function as new light-sensing cells. Unlike earlier optogenetic therapies that required bulky external devices, MCO-010 eliminates the need for high-tech goggles, simplifying the treatment process and enhancing patient convenience. The ability to restore light sensitivity without external devices represents a major advancement, potentially broadening the applicability of optogenetics to a wider patient population.

    future of ophthalmology

    Source

    Another critical area of innovation highlighted in our survey is the advancement of treatments for AMD and GA.

    New AMD/GA Treatment

    Age-related macular degeneration (AMD) and geographic atrophy (GA) represent a significant challenge in ophthalmology, demanding innovative therapeutic strategies beyond the established anti-VEGF paradigm.

    future of ophthalmology

    Source

    Gene Correction

    Gene editing is emerging as a powerful tool in the fight against AMD and GA, potentially correcting the underlying genetic errors that contribute to these diseases. Essentially, it allows us to make precise changes to a patient’s DNA.

    Traditional gene editing techniques often rely on creating ‘double-strand breaks’ (DSBs) in the DNA at specific target sites, which are like precise cuts in the DNA strand. These cuts are made using specialized enzymes, like CRISPR-Cas9, which act as molecular scissors. While effective, these methods can sometimes introduce unwanted changes at the cut site, such as small insertions or deletions.

    After a DSB is made, the cell’s natural repair mechanisms kick in. There are two main pathways:

    • Non-Homologous End Joining (NHEJ): This is the cell’s quick-fix method. It essentially glues the broken ends back together. However, this process can sometimes introduce errors, leading to small insertions or deletions that can disrupt the gene’s function.
    • Homology-Directed Repair (HDR): This is a more precise repair method. It uses a ‘donor’ DNA template to guide the repair process, ensuring accuracy. However, HDR is more complex and less efficient, especially in non-dividing cells.

    To overcome these limitations of traditional gene editing, researchers have developed more precise techniques:

    • Base Editing: This technique allows scientists to change a single ‘letter’ in the DNA code without creating DSBs.
    • Prime Editing: This advanced technique builds upon CRISPR-Cas9, allowing for a wider range of precise DNA changes. It can correct most disease-causing mutations with enhanced safety and accuracy.
    • CASTs (CRISPR-associated transposases): This method enables larger DNA modifications without creating DSBs, offering a safer approach to genetic correction.

    Why does this matter for AMD and GA? These advancements in gene editing are crucial for addressing the genetic roots of these pathologies. We can potentially develop more effective and targeted therapies by precisely correcting the faulty genes that contribute to these diseases. The technologies are still being researched, but they hold great promise for the future of ophthalmology.

    Cell Reprogramming

    Cell reprogramming offers a novel approach to regenerative medicine, with the potential to replace damaged retinal cells. This technique involves changing a cell’s fate, either in vitro or in vivo. In vitro reprogramming involves extracting cells, reprogramming them in a laboratory, and then transplanting them back into the patient. In vivo reprogramming, which directly reprograms cells within the body, holds particular promise for retinal diseases. This approach has succeeded in preclinical studies, demonstrating the potential to restore vision in conditions like congenital blindness.

    future of ophthalmology

    Vectors and Delivery Methods

    The success of gene therapy relies on efficiently delivering therapeutic genes to target retinal cells. Vectors are essentially delivery vehicles, designed to carry therapeutic genes into cells. These vectors can be broadly classified into two categories: viral and non-viral. Vectors, both viral and non-viral, are crucial for this process.

    Viral vectors are modified viruses that have been engineered to remove their harmful components and replace them with therapeutic genes. They are highly efficient at delivering genes into cells, as they have evolved to do just that. Adeno-associated viruses (AAVs) are the most commonly used viral vectors in ocular gene therapy due to their safety profile and cell-specificity. The diversity of AAV serotypes allows for tailored gene delivery to specific retinal cell types.

    Non-viral vectors, on the other hand, are synthetic systems that don’t rely on viruses. They can be made from lipids, polymers, or even DNA itself. While they may be less efficient than viral vectors, they offer safety and ease of production advantages.

    Advances in vector design, whether viral or non-viral, are focused on enhancing gene expression, cell-specificity, and carrying capacity.

    Now, let’s examine the ongoing evolution of anti-VEGF treatments, a cornerstone of modern retinal care.

    New Anti-VEGF drugs

    The landscape of ophthalmology has undergone a dramatic transformation since the early 1970s when Judah Folkman first proposed the concept of tumor angiogenesis. His idea sparked research that ultimately led to the identification of vascular endothelial growth factor (VEGF) in 1989 and the development of anti-VEGF therapies, revolutionizing the treatment of neovascular eye diseases, dramatically improving outcomes for patients with wet AMD, diabetic retinopathy, and retinal vein occlusions.

    Population-based studies have shown a substantial reduction (up to 47%) in blindness due to wet AMD since the introduction of anti-VEGF therapies. However, significant gaps remain despite this progress, especially regarding treatment durability. Anti-VEGF drugs require frequent intravitreal injections, which can be difficult for patients due to time commitments, financial costs, and potential discomfort. Although newer agents have extended treatment intervals, patient adherence and undertreatment challenges persist in real-world settings. Innovative approaches are being investigated to address these unmet needs to increase drug durability and reduce the treatment burden.

    Tyrosine Kinase Inhibitors

    One approach to increasing treatment durability is using tyrosine kinase inhibitors (TKIs). TKIs are small-molecule drugs that act as pan-VEGF blockers by binding directly to VEGF receptor sites inside cells, offering a different action mechanism than traditional anti-VEGF drugs that target circulating VEGF proteins.

    Currently, TKIs are being investigated as maintenance therapy, primarily in conjunction with sustained-release delivery systems. Two promising TKIs for retinal diseases are axitinib and vorolanib. In a bioresorbable hydrogel implant, Axitinib is being studied for neovascular AMD and diabetic retinopathy. Vorolanib, in a sustained-release delivery system, is also being investigated for neovascular AMD. These TKIs offer the potential for less frequent dosing, reducing the treatment burden for patients.

    Port Delivery System

    The Port Delivery System (PDS) is a surgically implanted, refillable device that provides continuous ranibizumab delivery for up to 6 months. While it’s FDA-approved for neovascular AMD, it’s also being investigated for other retinal diseases, such as diabetic macular edema and diabetic retinopathy.

    future of ophthalmologySource

    Although the PDS faced a voluntary recall due to issues with septum dislodgment, it has returned to the market with modifications. The PDS offers the potential for significantly reduced treatment frequency for a subset of patients. However, challenges remain, including the need for meticulous surgical implantation and the risk of endophthalmitis.

    Nanotechnology

    Nanotechnology offers promising solutions to overcome limitations of current ocular drug delivery. The unique structure of the eye, with its various barriers, poses challenges for drug delivery. Topical administration often fails to achieve therapeutic concentrations, while frequent intravitreal injections carry risks. Nanotechnology can improve drug solubility, permeation, and bioavailability through nanoparticles, potentially extending drug residence time and reducing the need for frequent injections. Several nanoparticle systems, lipid and polymeric, are being studied for ocular drug delivery, offering hope for more effective and less invasive treatments.

    AI Ophthalmology and Optometry | Altris AI

    FDA-cleared AI for OCT analysis

    Demo Account Get brochure

    Summing up

    The advancements discussed in this article, encompassing AI, optogenetics, novel AMD/GA therapies, and refined anti-VEGF treatments, collectively signal a transformative era for ophthalmology. As highlighted by the survey results, AI probably encompasses most of the changes by redefining diagnostic and clinical workflows through its capacity for image analysis, biomarker identification, and personalized patient management.

    Optogenetics offers a distinct pathway to vision restoration, bypassing limitations of traditional gene therapy. The progress in AMD/GA treatments, particularly gene editing and cell reprogramming, presents opportunities for targeted interventions. Finally, the evolution of anti-VEGF therapies, with innovations in drug delivery and sustained-release mechanisms, addresses persistent challenges in managing neovascular diseases.

    These developments, driven by technological innovation and clinical research, promise to enhance patient outcomes and reshape the future of ophthalmic care.

Recently Posted

  • innovations in eye care

    How 7 Leading Optometry Centers Provide Innovations in Eye Care

    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    08.05.2023
    9 min read

    Top modern optometry centers are not afraid of embracing effective eye care innovation. Some offer home eye tests, others create mobile apps to try on frames remotely. There are optometry centers that use artificial intelligence to empower optometrists in OCT/ fundus interpretation. We’ve collected 7 optometry centers that are using technology now to win the competition. 

    From advanced diagnostic and treatment technologies to personalized care and patient education, these centers are transforming the way clients approach and bring innovations in eye care. 

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT

    FDA-cleared system for your business

    Demo Account Get brochure

    Optometry meets technology: AI, AR, mobile apps, and home eye tests

    Augmented Reality (AR), mobile apps, and home eye tests are emerging trends that are changing the way people receive eye care.

    • AR technology uses the camera lens on a mobile device or your PC as the method to deliver information and graphics. A user accesses an AR application, and the camera viewpoint incorporates the data directly into the perspective in real time. With AR apps for eyewear and exams, anyone can have a large selection of glasses and other services from their homes, offices, or on the go.
    • Mobile apps offer a wide range of eye care services, from information on eye health and tips for maintaining healthy vision to virtual vision screenings. Moreover, mobile apps are also used to educate both young and experienced optometrists. We strongly believe that educational mobile apps inevitably become an additional efficient tool for OCT education because they are accessible and interactive. 
    • Another one of the innovations in eye care is Home eye tests are also often enabled by digital vision testing tools. They are becoming more and more common and offer a convenient and cost-effective way to monitor vision changes.
    • As for AI use in optometry practice, it allows its users to see a broader perspective of a patient’s eye health. Incorporating AI streamlines billing procedures, expands the input of electronic health records (EHRs), optimizes claims management, and improves cash flow. AI technology can also be used in cooperation with AR assisting in the glasses selection.

    Although these innovations in optometry and ophthalmology provide more comprehensive access to eye care and improve patient engagement, many optometry practices are still hesitating to add such innovations to their routine. That is why we prepared the info about 7 famous optometry practices that are already using innovations in eye care.

    Warby Parker

    innovations in eye care

    Warby Parker started its way in 2010 when the founders of the company were students. One of them lost his glasses during a tourist trip. The cost of replacing them was so high that he spent his first semester of graduate school without them. That is why the company’s mission is to provide affordable, high-quality eyewear to consumers, while also addressing the issue of access to vision care. 

    One of Warby Parker’s unique innovations in eye care is its Home Virtual Try-On program, which allows customers to try on up to five frames at home for free before making a purchase. This program makes it easier for customers to find the perfect pair of glasses and eliminates the need for them to go to a physical store to try on frames.

    innovations in eye care

    Warby Parker also offers an online eye exam called the Virtual Vision Test. It is designed to provide customers with a convenient and affordable way to obtain a prescription for glasses or contacts from the comfort of their own homes.

    The Virtual Vision Test is a telemedicine service that uses technology to allow customers to take an eye exam using their computer or smartphone. The test is not meant to replace a comprehensive eye exam performed by an eye doctor, but rather to provide a convenient option for those who need a prescription renewal or have mild refractive errors. 

    After completing the test, the results are reviewed by a licensed ophthalmologist or optometrist, who will issue a prescription if appropriate. The customer can then use the prescription to purchase glasses or contacts from Warby Parker or any other provider.

    Lenskart

    innovations in eye care

    Lenskart is a fast-growing company of innovations in eye care in India focused on making eyewear more affordable for everyone. To achieve this goal, the company has developed a number of innovative technologies and business models, including a mobile app that allows customers to try on frames virtually and a home vision testing service that allows to check their prescriptions from the comfort of their own home.

    One special feature of the Lenskart app is the “3D Try-On” feature, which uses 3D imaging technology to create a model of the customer’s face and allows them to try on different frames virtually. This feature helps get a better sense of how a particular frame will look on a customer’s face before making a purchase.

    innovations in eye care

    Another one of Lenskart’s innovations in eye care is the Home eye test, designed to provide people with a convenient and affordable way to obtain a prescription for glasses or contact lenses. To take the Lenskart Home Eye Test, customers must first book an appointment on the company’s website or mobile app. 

    The eye test includes a visual acuity test, a color vision test, and a refractive error test. The optometrist will also check the customer’s eye health and recommend any necessary follow-up exams or treatments. After the test, the optometrist will provide a prescription, which the customer can use to purchase glasses or contacts from Lenskart or any other provider.

    SmartBuyGlasses

    innovations in eye care

    SmartBuyGlasses is an online eyewear retailer that was founded in 2006. The company is headquartered in Hong Kong, but it operates in more than 20 countries worldwide. Company’s Virtual Try-On feature is available on the website and allows customers to upload a photo of themselves and try on glasses virtually using augmented reality.

    After the website generates a 3D model of the customer’s face, they can adjust the position and size of the glasses to get a better sense of how they will look on their faces. The virtual try-on innovations in eye care also allow to share images of themselves wearing the glasses with their friends and family to get feedback on which pair looks best on them.

    innovations in eye care

    Another eye care innovation of SmartBuyGlasses is a Lens scanner app that uses advanced technology to scan the user’s current eyeglasses lenses and analyze the prescription, allowing to order a new pair of glasses online without visiting an eye doctor.

    The app works by instructing the user to place their current eyeglasses on a flat surface and position their smartphone camera above the lenses. The app then captures a series of images and uses advanced algorithms to analyze the curvature, thickness, and other factors of the lenses to determine the prescription. 

    GlassesUSA

    innovations in eye care

    GlassesUSA is an innovative and socially responsible eyewear retailer that is committed to providing quality products and services to its customers. With its focus on technology, sustainability, and social impact, GlassesUSA has become a popular choice for customers in the United States and around the world.

    One of the innovations in eye care of GlassesUSA that is worth paying attention to is a Prescription Scanner app. The app works by guiding the user through a series of steps to scan their face and eyes using their smartphone camera. It uses advanced algorithms to analyze the user’s facial features and measure the distance between their pupils, which is a crucial factor in determining the correct prescription for eyeglasses.

    innovations in eye care

    Once the scanning process is complete, the GlassesUSA app provides the user with their personalized prescription and recommendations. The app also offers a Virtual Try-On feature that allows users to see how different frames will look on their faces before making a purchase.

    Another feature is a Find-your-Frame Quiz on the website. The quiz consists of a series of questions that ask users about their face shape, personal style, and preferences for eyeglass frames, such as color, material, and shape. Based on the user’s responses, the specially designed program generates a personalized selection of eyeglasses frames that are recommended for their face shape and style preferences.

    Zenni Optical

    innovations in eye care

    Zenni Optical offers a wide range of eyewear products, including prescription glasses, sunglasses, and sports eyewear. The company offers glasses at significantly lower prices than traditional brick-and-mortar stores, which has made it a popular choice for customers.

    Company’s Virtual Try-On feature uses advanced AR technology to create a 3D model of the user’s face, allowing them to see how different frames will fit and look on them.

    innovations in eye care

    To use the Virtual Try-On innovations in eye care, users simply need to upload a photo of themselves or use their computer or smartphone camera to take a live video. This feature then maps the user’s facial features and displays a selection of eyeglasses frames that can be tried on virtually. Users can then select different frames to see how they look from different angles, and can even compare different frames side-by-side.

    The Zenni Optical Virtual Try-On is a convenient and easy-to-use tool for anyone in the market for a new pair of glasses. It allows users to see how different frames will look on their faces without the need to visit a physical store or try on multiple pairs of glasses. 

    VSP Global

    innovations in eye care

    VSP Global is a leading eyewear company that was founded in 1955 by a group of optometrists who wanted to provide affordable eye care. Today, VSP Global is a major player in the optometric industry and offers its customers a wide range of services and products.

    The company works with a network of over 40,000 eye doctors and optometrists to provide affordable and accessible eye care to its customers. VSP Global also offers other eye care services, such as telehealth consultations, on-site eye exams for businesses and schools, and a mobile eye clinic that serves underserved communities.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT

    FDA-cleared system for your business

    Demo Account Get brochure

    And as every company from this article, VSP Global has a strong focus on technology and innovations in eye care. The company has developed a number of proprietary technologies, including an AI-powered platform called Eyeconic that helps customers find the right eyewear.

    Eyeconic uses machine learning algorithms to analyze a customer’s facial features and suggest frames that would fit their face shape and size. VSP Global has also developed a mobile app called myVSP that allows customers to manage their vision benefits, find an eye doctor, and order contact lenses online.

    iSight+

    effective eye care innovation

    Another AI-oriented optometry center is iSight+, located in Hong Kong. iSight+ is an excellent example of how an optometric eye care center didn’t hesitate and chose to provide innovations in eye care and a more in-depth examination of the macula.

    Andy Meau. Optometrist, the owner of ISight+ Optometric Eye Care center: 


    “Altris AI will be a great tool in helping to monitor patients with existing macular diseases. I am also honored to be the first EPC in Hong Kong to provide this service.”

    In addition, the eye care center is also equipped with advanced optometric technologies, digital photography systems, and optical coherence tomography (OCT), which helps to provide the highest quality eye examination.

    Summing Up

    Optometry centers can significantly benefit from incorporating innovations in eye care, such as augmented reality, artificial intelligence, and mobile apps, into their practice. These technologies enhance the patient experience, improve diagnostic accuracy, and streamline clinical workflows.

    Moreover, the use of innovative technology can help optometry centers stay competitive in a rapidly evolving healthcare landscape. Patients are increasingly tech-savvy and expect healthcare providers to offer convenient, digital solutions that meet their needs. By embracing innovative technologies, optometry centers can attract new patients and retain existing ones, while also increasing operational efficiency and reducing costs.

    Of course, there may be concerns about the cost and complexity of integrating new technologies into an optometry practice. However, the benefits of doing so can far outweigh these potential challenges. With careful planning and implementation, optometry centers can successfully leverage AR, AI, and other innovations in eye care to enhance patient care, improve clinical outcomes, and thrive in a rapidly changing healthcare environment.

  • New technology in optometry: we asked optometrists, cover with the photo of an expert

    Future of Optometry: How will Optometry Practice Look in 2040?

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    29.03.2023
    9 min read

    Future of Optometry: How will Optometry Practice Look in 2040?

    In the next two decades, we can expect to see a paradigm shift in the way optometry is practiced. Advances in new technology, such as AI (artificial intelligence), machine learning, and virtual and augmented reality, are expected to revolutionize how optometrists diagnose, manage, and treat eye-related problems. Optometry’s future is promising for those who are ready to embrace innovations.

    For example, smart contact lenses that can monitor blood sugar levels for diabetic patients or detect early signs of glaucoma are already in development, and they could become mainstream within the next 20 years.

    the future of optometry

    In addition to the innovations, changes in demographics will also play a significant role in shaping the future of optometry. The aging population will require more specialized eye care, particularly for conditions such as macular degeneration and cataracts, which are more prevalent in older adults. The rise of chronic diseases such as diabetes will also increase the demand for optometric services, especially in developing countries where access to healthcare is limited.

    AI Ophthalmology and Optometry | Altris AI

    Register in a free Demo Account to see how AI for OCT works. AMD, DR, early glaucoma examples.

    Demo Account Get brochure

    The future of optometry is exciting and holds great promise for patients and practitioners alike. In this article, we will explore some of the potential changes that ODs may face in the coming years based on the survey that we have conducted.

    In the next 20 years, the technology in eye care will be represented by AI and is expected to revolutionize the field in several areas. Here are some ways AI is helping in optometry:

    • Diagnosis and treatment. AI algorithms can analyze large amounts of patient data and provide accurate and fast diagnoses of eye diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration. AI could also help in designing personalized treatment plans for individual patients.
    • Screening and monitoring. AI can help specialists screen patients for eye diseases more accurately and quickly. For example, a patient could take a picture of their eyes with their smartphone, and an AI algorithm could analyze the image for signs of eye disease. AI could also help monitor the progression of eye diseases over time.

    Future of optometry

    • Enhance patient care. AI-powered tools could help ODs provide more personalized and comprehensive care to their patients. For example, the AI algorithm helps to select the most suitable eyeglasses or contact lenses for a patient based on their unique vision needs and lifestyle factors.
    • Research and development. AI could help optometrists develop new treatments for eye diseases. By analyzing large amounts of patient data, AI algorithms could identify new patterns and potential treatments for eye diseases. Enhanced by AI precision, this enables more accurate identification and quantification of biomarkers, leading to better patient stratification, treatment monitoring, and prediction of therapeutic responses.

    In addition, the implementation of AI can present various prospects for improving clinic operations, simplifying billing procedures, accelerating the input of EHRs (electronic health records), optimizing claims management, and boosting cash flow. As high-deductible health plans (HDHPs) gain popularity among employers and patients, revenue cycle management can be seamlessly integrated with AI, considering the increasing number of patients defaulting on their medical bill payments.

    future of optometry

    Although artificial intelligence is about to bring significant changes to the industry, it is important to remember that its effectiveness is limited to tasks that it has been specifically trained to perform. In contrast, AI may not perform well in areas outside its training. 

    Therefore, it is crucial to focus on enhancing ODs’ proficiency in utilizing AI instead of worrying about the possibility of job replacement. The integration of AI provides specialists with an opportunity to enhance patient outcomes on a global scale.

    AI Ophthalmology and Optometry | Altris AI

    Register in a free Demo Account to see how AI for OCT works. AMD, DR, early glaucoma examples.

    Demo Account Get brochure

    To utilize cutting-edge technologies proficiently, OD specialists must possess critical thinking skills and the ability to manage complex cases in real-time. Additionally, communication skills are essential, including cultural sensitivity, multilingualism, and familiarity with alternative communication platforms such as smartphone-based applications. These skills will be particularly important for optometry specialists in 2040.

    technology in optometry

    Overall, AI has the potential to greatly improve the accuracy and speed of diagnosing and treating eye diseases, leading to better patient outcomes and a more efficient healthcare system.The evolution of OD and MD roles

    In 2019, Richard C. Edlow, OD, claimed that nearly 20 million more routine and medical eye exams will be required in 2025 compared to 2015. That is the future of optometry that may look frightening because of the burden. The volume of surgery required for the aging US population will also increase. What is more, the number of cataract surgical procedures will also significantly increase—from 3.6 million in 2015 to 5 million in 2025. Add here the fact that the number of ophthalmologists will increase by only 2.1% in this same period. 

    Given these facts, in the not-too-distant future, ophthalmologists will need to focus on surgical procedures, while optometrists will provide more medical care.

    the future of optometry

    The field of ophthalmology must be fully prepared to meet the huge and growing demand for surgical procedures and therapeutic intravitreal injections. This brings us to the fact that the field of optometry, in turn, must be ready to manage the ever-increasing demand for medical ophthalmic services.

    The roles of OD and MD are changing. With the advent of electronic healthcare, ophthalmologists are already spending more time on the computer than providing proper patient care. The ability to use innovative technology as well as in ophthalmology, digital thought processes, and critical thinking will create new opportunities in eye care as optometrists move further towards ‘data analysis’ and away from ‘data collection.’ OD specialists must ensure that they are properly trained in new technology in optometry and its advances to enhance, not inhibit, the quality of patient care.

    technology in optometry

    It is also worth mentioning that despite the speed of new technology in optometry, the human relationship between patient and doctor remains the most powerful tool. To properly care for patients, ODs will need more than clinical skills, knowledge, or the latest technological advances. Patients need thoughtful, professional, kind, trusting, understanding, and caring optometrists.

    As technology for the eye care advances, its education will also change. There may be more need for data analysis, less need for data collection, and an increased need for interpersonal skills (such as empathy, compassion, and bedside manner).

    Future of Optometry: AI for OCT technology in optometry

    OCT has become an important diagnostic tool for the detection and treatment of various eye diseases, such as glaucoma, macular degeneration, and diabetic retinopathy. Its ability to obtain high-resolution cross-sectional images of the retina and optic nerve will broaden the horizons of technology and help optometrists detect and track changes in ocular structures that may not be visible during normal eye examination. 

    technology in optometry

    Here are some ways in which practitioners will benefit from implementing technology in the eye care:

    • Improved diagnosis. OCT provides highly detailed images of the eye’s structures, allowing ODs to detect and diagnose eye conditions much earlier than with traditional methods. In fact, OCT is also called an optical retinal biopsy. This method makes it possible to examine 18 zones of the retina and detect minor or rare pathologies. This enables optometrists to provide timely treatment and prevent further damage to the eye. 
    • Better management of eye diseases is the future of optometry. OCT allows optometrists to monitor the progression of eye diseases such as glaucoma, ARMD, and diabetic retinopathy by taking detailed retinal images. It helps to determine the severity and stage of the disease, compare images after examination with documented results, and track disease progression. Moreover, with OCT examinations, ODs can also monitor the same patient to choose the most accurate diagnosis.
    • Enhanced patient care. OCT is a noninvasive and painless procedure that is easy for patients to undergo. It uses safe laser light, avoiding all the side effects or risks. As the procedure is comfortable and effortless for both the ODs and patients, it helps to build stronger relationships by providing a less intimidating experience than other examinations.
    • Increased revenue. Optometrists who offer OCT in their practices can generate an additional revenue stream by charging for the procedure and using it to attract new patients.

    And, as OCT becomes a standard tool in optometric practice, generating vast amounts of imaging data, AI is perfectly poised to revolutionize how this data is analyzed, interpreted, and utilized to improve patient care.

    The impact of AI is already being felt in real-world optometry practices. For example, The Eye Place, an optometry center in Ohio, has successfully implemented Altris AI, an AI-powered OCT analysis system. Dr. Scott Sedlacek, the owner of The Eye Place, reports that the system has been instrumental in detecting and defining pathologies that he might have missed, leading to earlier intervention and improved patient outcomes. Patients also appreciate the color-coded images generated by the AI, which serve as an educational tool and help them understand their treatment plans better.

    new technology in optometry

    AI technology in optometry is improving diagnostic accuracy and enhancing practices’ overall efficiency. By automating tasks such as image analysis and data entry, AI frees up optometrists’ time, allowing them to focus more on patient interaction and complex decision-making. This streamlined workflow not only benefits practitioners but also improves the patient experience, making integration of AI into optometric practice not just a possibility but a new standard.

    The future of Optometry: Focusing on myopia management

    According to a survey conducted by the American Optometrists Association, nearly 70% of optometrists reported an increase in patient requests for myopia treatment in the last two years. Myopia is a rapidly growing problem worldwide. Only in the USA, it is predicted that by 2050 the number of patients will increase to 49.8%. As unfortunate as it may be, such a global epidemic of myopia will undoubtedly create an opportunity to expand the practice of specialized treatment.

    technology in optometry

    In the future, optometrists may manage myopia using a combination of approaches, and one of the most discussed is orthokeratology (ortho-K). This non-surgical approach that involves wearing specially designed contact lenses has been used to reduce the degree of myopia since the 1960s. Although this method is not new in optometry practice, many companies are still working hard to create new approaches and upgrade them. For example, two years ago, Johnson & Johnson Vision announced FDA approval of its Acuvue Abiliti Overnight Therapeutic Lenses for the management of myopia. That same year, CooperVision announced that its Procornea DreamLite night lenses for ortho-k had received the CE Mark from European regulators for slowing the progression of myopia in children and young adults. 

    Overall, the future of myopia management with new technology in optometry will likely involve a personalized, multi-faceted approach that combines various strategies to reduce the progression of myopia and improve vision.

    Game-changing contact lenses

    Research published in Advanced Materials Technologies claimed that contact lens sensors can be used to monitor many common diseases in the near future. The fact is that biomarkers in the lacrimal fluid make it possible to create diagnostic contact lenses. Such lenses would analyze these biomarkers and detect and treat systemic and ocular diseases such as diabetes, cancer, and dry eye syndrome.

    It is predicted that in the near future, lenses will be able to monitor intraocular pressure, detect glaucoma, and even create images of retinal vessels for early detection of hypertension, stroke, and diabetes. For patients with diabetes, these lenses would be incredibly useful because they measure blood glucose levels. Some companies, like Google, have already dedicated years to creating such lenses. Nowadays, scientists are even working on lenses that change color to alert about changes in glucose levels.

    New Technology in Optometry

    However, according to Advanced Intelligent Systems, one limitation of these lenses to date is that they can typically only detect one biomarker in the eye, such as glucose or lactic acid. Lenses capable of detecting multiple chemical components are predicted to be developed in the future.

    Summing up

    Predicting the exact way new technology will affect optometry practice in 20 years is challenging, as technological advancements and societal changes can rapidly alter the way healthcare is delivered. However, the widespread adoption of AI in optometry is likely to occur well before 2040, making it crucial for practices to consider integrating this transformative technology now to remain competitive and provide cutting-edge care. Nevertheless, even though AI and technology will gain popularity among eye care specialists, AI and machine learning will still be only assistants. At the same time, ODs will be responsible for diagnosis, treatment, and care. 

    AI Ophthalmology and Optometry | Altris AI

    Check how artificial intelligence assists in OCT interpretation

     

    This brings to the forefront the important principles of patient education, empathy, and personal contact with patients (virtue ethics). Innovations in optometry technology should allow ODs to have more personal contact and more time to improve outcomes for patients-not to improve productivity.

    In addition, optometric education will need to address these interpersonal skills so future generations of ODs are able to adequately educate patients on findings and ensure the quality of care.

    There will always be a business of health care, but the challenge for the optometric profession is for ODs to prioritize the well-being of all patients.

  • Optometry Practice Management Tips 10 Real Cases for Revenue Increase

    Optometry Practice Management Tips: 10 Real Cases for Revenue Increase

    AI Ophthalmology and Optometry | Altris AI Maria Martynova
    14.02.2023
    6 min read

    Optometry Practice Management: Tips and Real Cases

    You’re a skilled optometrist, passionate about patient care. But are you prepared for the challenges of running your own practice? Successfully navigating the business side of optometry practice management demands more than just clinical expertise but also a deep understanding of business management principles. This transition involves constant decision-making, from choosing the right location and equipment to hiring and managing staff.

    We’ve gathered information on ten optometry centers that managed to survive the competition and increase their revenue, as well as optometry practice management tips. The articles will guide you through major challenges that many optometry businesses face, such as the retention of specialists, competition with large chains and retailers, and marketing and sales, identifying growth opportunities.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Make your eye care business technological

    Demo Account Get brochure

    How to improve optometry practice: start with the retention of employees

    This problem is vital considering the huge lack of optometry specialists worldwide. According to WHO, 14 million optometrists are needed globally when there are only 331K available. There are several strategies that optometry businesses can use to retain optometrists.

    • Delegating more examinations to technicians

    Eric Rettig, OD, a partner with Mountain View Eye, a Vision Source practice in Pennsylvania, shares their optometry practice management optimization: assigning two technicians to each of its four doctors to delegate the examination process to the technicians. Tasks such as pupil testing, versions (EOMs), and dilation were incorporated into the pretesting protocols. Technicians were also authorized to perform additional testing based on patients’ past diagnoses or complaints. This approach ensured that the doctor had all pertinent data readily available upon entering the exam room, minimizing patient wait times and maximizing efficiency.

    Owners have implemented the change to increase the number of patients seen per hour, but it has also given additional benefit: now doctors can spend more quality time with each patient.

    optometry practice management

    With an average revenue of $400 per patient and 6-7 patient care hours per day in a five-day week, this equated to $2,600 additional revenue per full-time doctor.

    • Using Artificial Intelligence for retina scan analysis.

    Many optometrists find OCT scan analysis challenging and are not confident about their interpretation skills. Using Artificial Intelligence for automated OCT scan analysis can make the work of optometrists more efficient, increasing the number of patients who undergo OCT examination and subsequently increasing revenue.

    One such case is the practice of Dr. William C. Fruchtman’s Optometry, owned and operated by Dr. William C. Fruchtman, O.D., in New Jersey.

    His practice offers comprehensive eye care services, including eye examinations, contact lenses, and glasses prescriptions. Dr. Fruchtman sought a tool to enhance both his optometry practice management and decision-making process in complex cases. His research led him to select Altris AI, an artificial intelligence platform for OCT scan analysis.

    eye care practice management

    Implementing Altris AI has significantly increased Dr. Fruchtman’s confidence and precision in diagnosing and managing eye conditions. The platform has also provided his practice with a competitive advantage. Altris AI features a referral urgency score ranging from green (no need to refer) to red (urgent referral needed). This scoring system helps optometrists avoid both over-referral and under-referral of patients.

    Thanks to the color-coded and labeled OCTs, optometry facilitates patient education and enables practitioners and patients to monitor the progression or treatment results more effectively.

    Biomarkers detected by Altris AI on OCT

    Optometrist Marketing: digital communication trends

    • Concentrating on eyewear sales.

    Jennifer Stewart, O.D., Optometrist and Founder at Look New Canaan, Connecticut, claims that 2 simple optometry practice management techniques can add $75,000 to the annual revenue of any optometry center.  Even more intriguing is that it’s done without seeing additional patients.

    One of these techniques is decreasing the sales of patients’ own frames (POF) glasses. Jennifer Stewart discusses the benefits available to the patient through their managed care plan, emphasizing that if lenses are cut for their own frame and the frame breaks, they will have already used their lens benefit.

    optometry marketing

    The optometrist explains how the patient’s current pair can serve as a backup and then escorts them to the optical area to meet with the optician. Before leaving the patient with the optician, the optometrist speaks privately with the optician, informing them of the patient’s desire to use their own frame and the discussion about the frame’s condition. The opticians have been trained to reiterate this message to the patient.

    The second one is communicating the need for all types of lenses (for computers, reading, and sunglasses), which can be a very effective revenue-generation optometry practice management tip many owners neglect. The optometrist states that these few extra minutes to talk about options available to patients can result in multiple payoffs in optical. This is one of the optometry practice management tips that works for any center.

    • Providing exquisite luxury experience.

    Fabio Pineda, the owner of Eye Boutique in Houston, Texas, previously held a volume-based, medical-style practice with an average per-patient purchase of one frame per year, 5 percent sunglass sales, and an average per-patient revenue of $300-$350. In 2021, the optometrist changed his approach, opening a fashionable boutique-style practice. He shifted to a low-volume VIP clientele and a red-carpet approach with gourmet beverages, pastries, and a dedicated sunglass section with a wide selection.

    This shift in eye care practice management has brought Dr. Pineda unique customers who specifically seek designer glasses and buy 5-9 pairs at a time, spending upwards of $4,000-$7,000 on purchases.

    optometry marketing

    • Using social media and digital marketing tools extensively.

    Your clients spend time on Instagram, Facebook, and Google, so these are the most effective digital marketing channels for communication with potential customers. 

    For instance, as an optometry marketing strategy to engage current and potential patients on social media, Dr. Arian Fartash, optometrist, CEO at GlamBaby, California, and blogger, considers three types of posts:

    • interactive posts that pose questions about product preferences, like showcasing two frames and asking followers which they prefer, encourage audience participation;
    • educational posts featuring interesting eye facts or eye-catching images related to eye health that offer informative content;
    • patient-focused posts showcasing satisfied patients wearing new eyewear to humanize the practice and demonstrate the positive impact of its services.

    eye care practice management

    • Providing a small warranty on all products.

    An optometrist and the owner of Brilliant Eyes Vision Center in Georgia, Janelle Davison, O.D., has implemented an extended warranty program for eyewear purchases to enhance patient confidence and increase revenue. For a $29.99 enrollment fee, patients receive significant discounts on replacement frames and lenses, paying only $50 for each, regardless of the original cost. This warranty, built into most eyewear packages, has proven popular with patients and generated an additional $14,000 in 2021. Dr. Davison has used the popular concept of buying technological equipment with a warranty, like smartphones or computers, that is familiar to customers.

    how to improve optometry practice

    • Educating patients

    According to Wolters Kluwer Health, patients crave educational materials from their providers, yet only two-thirds get them. This leaves patients searching for information, potentially exposing them to unreliable sources.

    Knowing that providing clear, accessible patient education is crucial for understanding and treatment adherence, The Eye Place, optometry from Ohio, is utilizing the full power of AI for OCT analysis tool, Altris AI. Their winning optometry practice management strategy combines decision-making help from the platform and a way to enhance patient education.

    eye care practice management

    Visual representations of patients’ conditions, facilitated by this technology, empower patients with a clearer understanding, leading to increased treatment compliance.

    Eye Care Practice Management: competition with larger chains

    Private offices find it hard to compete with chains like Specsavers in terms of prices or the speed of service. Chains often have better locations and can spend much more money on marketing. So, how to improve optometry practice to win this competition among corporations?  There are several things that big companies don’t have:

    • Offering personalized service and building a relationship with patients. Building a local presence is the key. Your optometrist center can be known and valued if you really care about the community, know each of your clients personally, and understand their pains and needs. More than that, 97% of marketers witnessed a rise in business outcomes as a result of personalization, according to Salesforce.
    • Providing unique, high-quality products unavailable at chain stores is also a worthy opportunity for a small but flexible business. For instance, some optometry centers build their presence relying on rare glasses brands with sophisticated designs. The global therapeutic contact lenses market is expected to grow at a CAGR of 4.90% from 2021-2027, and designer brands will play a crucial role in this growth.
    • Providing exceptional customer service and after-care. Communication with customers is the core of relationships in any sphere, and healthcare is no exception.

    Today it’s easier to communicate with customers using social media, messengers, and telemedicine. This is the one of optometry management tips that not only allows optometry centers to take care of their clients not only during visits but afterward as well are much more profitable.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT analysis

    Make your eye care business technological

    Demo Account Get brochure

     

    • Storing all the patients’ data effectively and securely is the key to fast and reliable services inside the optometry centers. There are various EHR systems for optometry centers, and finding the best optometry practice software is hard. However, it is always wise to rely on testimonials. Here, you can find another portion of optometry practice management tips that focus solely on the best optometric practice management software with Acuitas activEHR 2.0, MedFlow EHR, Liquid EHR, EyePegasusEHR, Eye Cloud Pro, OD Link, ManagementPlus, Medesk named the best optometric practice management software according to our research and reviews.

    PATIENTS’ NO SHOWS

    A patient no-show is a painful problem for the majority of optometry centers. Patients ignore yearly checkups and forget about follow-up visits whenever they feel better.

    Virtual check-ins increased profitability and reduced the cost of goods sold (COGS) for the partner at Wichita Optometry. Dr. Chad Fleming adopted this optometry practice management approach through the efficient check-in process he observed at Walmart. His practice faced the challenge of managing a high volume of phone calls and text messages, requiring either additional staff hiring without an immediate increase in revenue or a strategic reallocation of existing personnel.

    optometry practice management

    Using software to remind about future visits can be the solution. For instance, Weave software helped Serenity i Care optometry to reduce the number of no-shows up to 30% from 75%. This software automatically informs clients about future visits via e-mails and texts.

    how to improve optometry practice

    There is no need for a team to have endless calls that are not responded to. Demandforce, Solutionreach, and Simplifeye are other solutions that might work, and they can be great software for reminding patients about visits. This is the most well-recommended optometry practice management software to deal with forgetfulness.

    By using these optometry management practice tips and continuously seeking ways to improve patient engagement, streamline operations, and increase efficiency, optometry can increase its revenue and sustain long-term success.

     

  • optometry practice management software

    Optometry Practice Management Software: Top 8 Applications

    AI Ophthalmology and Optometry | Altris AI Mark Braddon
    13.02.2023
    9 min read

     

    Optometry practice management software is designed for eye care specialists to manage their practices more efficiently and effectively. The software can automate a wide range of administrative tasks, making it easier for practitioners to focus on patient care.

    Unlike other medical practices, optometry involves the management of a much larger number of optical instruments, processes and aids. Therefore, software for optometrists is more complex and multifunctional. It usually includes features such as appointment scheduling, patient registration, billing and insurance claims processing, patient data management, and secure messaging and email communication. The software can also integrate with other technologies, such as electronic health records (EHRs), OCT image management systems and diagnostic equipment.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT scan analysis

    Register in a free Demo Account to see how it works: OCT scans with AMD, DR, early glaucoma are already inside.

    Demo Account Get brochure

    By streamlining administrative tasks and providing practitioners with patient data, optometry practice management software can help eye care clinics improve their operations, increase efficiency, and provide better patient care. The software can be customized to fit the specific needs of individual practices and is often offered on a subscription basis, making it an affordable and accessible solution for eye care clinics of all sizes.

    In this article, we will highlight the main benefits of practice management optometry soft, and provide you with a list of the Top 8 software to look at.

    What are the benefits of practice management optometry software?

    Optometry practice management software can help doctors in multiple ways besides increasing their revenue, efficiency, and productivity. Some of the key benefits of optometry practice management software include the following items.

    optometry practice management software

    • Improved patient management. The software can store and organize patient data, including medical history, examination results, fundus or OCT images, and treatment plans. This information can be easily accessed by practitioners and used to inform patient care.
    • Efficient appointment scheduling. The software can automate appointment scheduling, which can help to reduce the risk of double-booking and minimize wait times for patients.
    • Accurate billing and insurance claims. The software can help to ensure that billing and insurance claims are processed accurately and efficiently, reducing the risk of errors and delays.
    • Increased revenue. By streamlining billing and insurance claims processes, optometry practice management software can help eye care clinics to reduce errors and increase revenue.
    • Easy access to patient records. The software can store and organize patient records, including OCT images, making it easy for doctors to access the information they need to provide the best care possible.
    • Improved patient communication. Some optometry practice management software includes features that allow for secure messaging and email communication between patients and practitioners, making it easier to communicate outside of office visits. 
    • Increased productivity. By automating repetitive tasks, such as appointment scheduling and billing, optometry practice management software can free up time for eye care practitioners to focus on providing an individual approach to each patient.
    • Better patient outcomes. With access to patient data and treatment history, eye care practitioners can provide more informed and effective care. This can lead to better patient outcomes and increased patient satisfaction.

    Overall, optometry practice management software can help eye care clinics to provide better patient care, increase efficiency and productivity, and improve their bottom line. Now let’s take a look at best optometry software.

    Altris AI

    optometry practice management software

    Altris AI is an image management system based on artificial intelligence (AI) tools that assists eye care specialists in OCT scan analysis and interpretation. The solution was designed in cooperation with retina experts to help practitioners detect the pathology from the OCT scan. Altris AI also can be easily integrated with EHR systems or used standalone as a web application.

    To create an Altris AI system, our specialists colored thousands of OCT scans and named more than 100 retinal pathologies and pathological signs to train an AI algorithm. May sound complicated, but the workflow of the image management system is pretty simple.

    1. First, a user uploads an OCT b-scans to the platform, and the AI model evaluates the scans. 
    2. After that, the model differentiates between normal scans and scans with moderate and severe pathology.
    3. With the help of the second step, eye care specialists are able to focus only on serious (red) scans, saving their precious time.
    4. After that, a user can highlight pathological signs with different colors, sort scans by severity level, and zoom.

    It is important to mention that the patient’s diagnosis is always on the eye care practitioner’s side. Altris AI is a tool that provides assistance in support in decision-making and allows its users to see a broader perspective of a patient’s eye health. 

    Watch a short overview of how Altris AI assists eye care specialists with OCT diagnosis.

    In addition, with Altris AI, users can work with all modern OCT equipment and popular data storage formats, such as DICOM of various lengths, png, and jpg. The patient data at all stages is tokenized and protected from disclosure. Eye care specialists can also actively use the Smart Reports feature, which allows users to select a single element (scan, layers, both eyes, etc.) that they want to see in their OCT report.

    Acuitas activEHR 2.0

    best optometry software

    In case you are working at or owning a midsize or large optometry practice, this hybrid electronic health record solution will be quite useful. Acuitas activEHR 2.0 can be hosted in the cloud as well as deployed on-premise, depending on your preferences. This software offers its users a wide range of tools, including electronic medical records, billing software, scheduling, PACs, accounting software and billing services. 

    What is more, Acuitas activEHR 2.0 can provide optometry clinics with various marketing and upselling features, and you can also customize BI reporting and track benefits. Healthcare providers can reach out to patients via either SMS or email, which makes it much easier to schedule an appointment.

    In addition, the optometry practice management software supports such features as IDA (Immediate Data Access), which allows practitioners to automatically update the frames. Acuitas activEHR 2.0 also offers a variety of application integrations. 

    MedFlow EMR

    optometry practice management software

    Next on our list — Medflow EMR software, which was designed to serve as either a standalone EMR (electronic medical record) or as a combination of EMR + practice management (PM) system. Like other optometry practice management software from our list, Medflow EMR was created specifically for eye care, but it can be used by eye care specialists providing both ophthalmology and optometry. 

    Medflow has a bunch of features, but the main one is the software has built-in templates designed for comfortable and time-saving work, including retina scans and surgery, cataracts, glaucoma, digital drawings, eye measurements, LASIK procedures, and more. In addition, it also has a base package, where ASC and optical modules are included.

    Overall, this practice management software will suit a clinic of any size, be it solo practice or a large hospital. The Medflow interface can be easily integrated with other practice management systems or image interpretation applications. Also, the software can be used as a hosted solution or installed on-premise.

    Liquid EHR

    optometry practice management software

    Liquid EHR software will be a perfect solution rather for small and midsize optometry practices than large hospitals. The broad range of its features includes medical records management, medical billing, scheduling and a lot more. The optometry practice management software provides eye care specialists with the ability to generate a mailing list, track systems workflow, manage documents, do compliance checks, integrate e-prescribing, and configurable exam records. 

    What is more, Liquid EHR has a number of specific optometry tools, such as historical IOP charts, drawing tools, built-in eye charts, frames data integration and image management. Optometrists can incorporate lab test results, view clinical summaries and send patient reminders. 

    In addition, the software also allows practitioners to have instant access to electronic insurance filing tools, patient recalls, drug interactions and allergy interaction checks, problem lists, active medication lists, medication recommendations, educational resources, smoking status, vital signs and more.

    EyePegasusEHR

    optometry practice management software

    The EyePegasus optometry practice management software offers a solid number of tools and features for optometry practices. You can schedule appointments online, turn on the automatic appointment reminders, work with a patient portal, scan documents, use an optical calculator and an iOS app with patient check-in features. 

    Using EyePegasus, eye care specialists can customize different tabs by choosing a proper layout, and create templates for treatment documentation. Moreover, optometrists are able to scan medical images and upload them directly into a patient’s chart. The is also a possibility to create referral letters using auto-populated EHR data. Other EyePegasus tools include building and dispensing optical orders and online appointment management. 

    In addition, the optometry practice management software allows managing inventory of different items, such as lenses. EyePegasus also can be integrated with a variety of applications. 

    Eye Cloud Pro

    optometry practice management software

    Another optometry practice management software created for optical professionals is Eye Cloud Pro. The list of its data managing tools is really impressive and includes e-prescribing, inventory management, integrated credit card processing, electronic claims submission, device integrations, two-way texting (SMS), and ECP Billing.

    The system also provides improved patient communication via secure messaging and email services. Clinic managers can configure various appointment types and lets clients request bookings via mobile or desktop devices. The software can be customized mailing lists, referral reports, account information, and sales reports to help with business strategy.

    In addition, one more benefit of Eye Cloud Pro software is that it has an integrated payment processing system with automated invoice and receipt generation. It will make a clinic’s data safe and retained. 

    OD Link

    optometry practice management software

    Taking about comprehensive optometry practice management software, OD Link is one of the most suitable variants for any clinic. It has both PM and EMR/EHR tools, helping to manage patient records, exams, appointments, inventory, billing/insurance information, and much more.

    OD Link software allows optometry practitioners to communicate with patients via SMS or email, work with electronic insurance claim processing centers, and create automated patient entrance forms.

    It also has a mobile app for iOS users, can accept data input from electronic optometry equipment, and can be integrated with different applications.

    ManagementPlus

    optometry practice management software

    Last but not least, ManagementPlus practice management software for optometrists was designed as a fully-fledged and customizable solution with a bunch of functions. With the help of this soft, eye care specialists can work with EHR, PM, ASC forms and inventory. It is also quite helpful in managing revenue cycle services, practice building and reputation management, business analytics and capital funding.

    What is more, ManagementPlus solutions allow optometrists and clinic managers to work in one platform, which makes communication clear and unified. Users can track workflows and handle all billing from eligibility to collections. 

    In addition, ManagementPlus has an in-built reporting tool, which allows specialists to report on most fields in the system, while the practice management system provides a choice of two scheduling modules. Users have the option of choosing either cloud-based or on-premise deployment. 

    Summing up 

    Optometry management software is a perfect choice for any medical practice, including solo practices, midsize clinics, and large hospitals. It is a perfect tool not only for managing patients, optical instruments and aids. The software is also helpful in improving operations, increasing efficiency and revenue and streamlining the working process. Such solutions keep all the data in one place, powering optometrists to document the patient history directly from diagnosis, and managers to avoid unnecessary paperwork.

    AI Ophthalmology and Optometry | Altris AI
    AI for OCT scan analysis

    Register in a free Demo Account to see how it works: OCT scans with AMD, DR, early glaucoma are already inside.

    Demo Account Get brochure

     

    Overall, optometry management software is a need for modern practice, as it improves the diagnosis and treatment, and even can be integrated with image management systems, like Altris AI. This integration assists in managing patient data, helps with controversial OCT scans, differentiate between pathological and non-pathological scans, and, most importantly, gives confidence to eye care specialists.

  • Eye Hospital Management Software: Top 8 Solutions for your Clinic

    Eye Hospital Management Software: Top 8 Solutions for your Clinic

    AI Ophthalmology and Optometry | Altris AI Maria Znamenska
    04.01.2023
    10 min read

    The term “Eye hospital management software” can have numerous meanings. Some soft can be a part of larger EMR (electronic medical records) systems, some can help with scheduling and billing, and some can help with patients’ information management. There is also an eye clinic management system that can even advise on diagnosis based on the patient’s history and medical images. Because of dozens of different soft on the market, it can be quite complicated to choose a proper set of tools for your practice.

    If you are an ophthalmologist or manage an ophthalmic diagnostic center/hospital, you may have trouble choosing the right software. That is why we’ve decided to prepare a list of solutions for patients’ health recording and diagnosis. We will highlight the benefits of the ophthalmic practice management system and help you choose the right solution.

    AI Ophthalmology and Optometry | Altris AI

    AI Decision Support for OCT

    Demo Account Get brochure

    Why eye hospital management software is worth using

    Eye hospital management software has become extremely important for eye clinics or medical centers looking to streamline their workflows, automate processes, and provide higher-quality care with less effort. You can have piles of paper and numerous excels, but when someone is on vacation, it will be impossible to make sense of all data and use it quickly.

    However, many clinics still work according to the old scheme and refuse to introduce new technologies into their clinical practice. There may be several reasons for this: mistrust of modern tools, reluctance to spend the money buying licensed eye clinic management system, or  reluctance to spend staff time learning how to work with the program. But, in fact, today, there are systems designed specifically for ophthalmologists to function flawlessly in eye care settings. Here are some benefits that an eye clinic management system can provide to your medical practice. Let’s take a closer look at some of them:

    Eye hospital management software

    • High level of data protection. Another important benefit of the ophthalmic practice management system is a high level of data protection. High-quality soft gives access to data only to authorized persons. The software also has security systems that guarantee no risk of data loss and full protection of medical history or information about the patient’s condition.
    • Increasing diagnostic accuracy. Using an eye clinic management system, ophthalmologists improve the quality of diagnosis and treatment, as they get access to the whole patient’s history from the past to the present. An ophthalmologist can learn about the previous treatment their patient received and about chronic illnesses. By learning this, doctors can create a better treatment plan.
    • Increased revenue. Depending on the number of employees in your clinic, you may need dozens to hundreds of personnel to smoothly handle manual processes. And more human resources mean more expenses. However, by using best practice management software for ophthalmology, you can significantly reduce spending and let your employees and doctors focus on the more creative tasks that require empathy and communication.   

    These are the most common benefits of an eye clinic management system. However, each system has its unique features, so let’s look at the top 8 eye clinic management systems. 

    Altris AI System

    eye hospital management software

    Altris AI is a unique eye clinic management system that allows eye care specialists to analyze OCT scans with the help of artificial intelligence (AI) tools. 

    How does it work? Putting it simply, retina specialists have colored thousands of OCT scans and named more than 100 retinal pathologies and pathological signs to train an algorithm, so it can assist specialists in detecting the disease. After loading an OCT scan in the eye hospital management software, the AI model evaluates the b-scans (up to 512) and differentiates between normal scans and scans with moderate and severe pathology. It gives eye care professionals the ability to focus only on serious (red) scans, saving patients valuable time.

    In addition, Altris AI allows its users to see a broader perspective of a patient’s eye health. All the reports are dynamically editable: the ophthalmologist can add/revise/delete items in the OCT report. Eye care specialists also can add segmentation/classification results to the OCT report in 1 click. And what’s even more important, Altris AI OCT report is understandable for both ophthalmologists and patients. 

    AI Ophthalmology and Optometry | Altris AI

    AI Decision Support for OCT

    Demo Account Get brochure

    Eye clinic management system features of Altris AI

    • The system allows working with all popular OCT equipment and all data storage formats, including DICOM of various lengths, png, and jpg.
    • Altris AI ophthalmic practice management system can be easily integrated with EHR systems or run standalone as a web application.
    • The system also takes care of user security, as all important patient data is tokenized and protected from disclosure at all stages.
    • The artificial intelligence program can independently identify more than 100 retinal pathologies and pathological signs.
    • The Smart Reports feature allows ophthalmologists to select the elements (single scan, layers, both eyes, etc.) that they want to see in their OCT report.
    • This All Scans feature allows the user to view all scans of a single OCT examination, sort them by severity level, and zoom.

    Watch a short overview of how Altris AI assists eye care specialists with OCT diagnosis and decision-making.

     

    DrChrono Software

    eye hospital management software

    DrChrono EHR is an iPad and iPhone-compatible platform that offers fully customizable form templates or ready-made forms to help users track patient information. 

    DrChrono EHR is an iPad and iPhone-compatible platform that offers fully customizable form templates or ready-made forms to help users track patient information. 

    Eye clinic management system features of DrChrono Software

    • The system allows medical practices to manage patient admissions, patient care, clinical charts, and billing.
    • Healthcare professionals can add patient notes to the medical record. The Vital Flowsheets module provides the ability to create basic health data and monitor the health indicators of each patient.
    • The DrChrono eye hospital management software also offers a variety of application integrations. 
    • Doctors can use the Free Draw module to annotate charts, OCT scans, or other files.

    RXNT Software

    eye hospital management software

    RXNT is a comprehensive billing, practice management, and EHR solution. This system improves patient care and simplifies clinical management. Access patient health history and prescriptions at the point of care, schedule patients and providers, and request and review lab or imaging orders with multi-site single sign-on (SSO).

    Eye clinic management system features of RXNT Software

    • Any RXNT ophthalmic practice management system products (EHR, ERX, PM, Billing, Scheduling) can be combined into a fully integrated “Full Suite” system.
    • Ophthalmologists, managers, or staff can add and organize documents in patient charts for clinical care plans and follow-up.
    • The system has developed customizable “smart” forms and short keys that improve work processes.
    • RXNT can share real-time data with other doctors to better coordinate care and support.

    In addition, an ophthalmic clinic can integrate RXNT eye hospital management software with the Altris AI system to create and dynamically edit OCT reports.

    Medfiles Software

    eye hospital management software

    Medfiles Software is a multi-task cloud-based solution that ensures compliance for ophthalmology clinic employees. The key features of this eye hospital management software are drug screening management, medical record tracking, case management, training tools, reporting, and safety documentation.

    Eye clinic management system features of Medfiles Software

    • Medfiles tracks patient treatment plans, open cases, treatment plans, medical expenses, and cash reserves and creates conclusions based on all the information.
    • The system can be easily integrated with different software so a doctor or staff can see scans of specific OCT examinations.

    Medfiles eye clinic management system allows to compare annual summary reports with benchmarks.

    IntelleChartPRO Software

    eye hospital management software

    Another cloud-based ophthalmic electronic medical record (EMR) solution is IntelleChartPRO. This system is very popular among ophthalmology clinics and centers. IntelleChartPRO helps professionals record and manage a patient’s treatment and medical history more effectively.

    Eye clinic management system features of IntelleChartPRO Software

    • Physicians or ophthalmology clinic management can customize the EHR themselves to fit their unique workflows.
    • IntelleChartPRO eye hospital management software developed adaptive template technology that allows offices to generate templates for each patient.
    • In combination with other eye clinic management system tools, the software becomes more relevant and allows more accurate diagnoses of patients and the creation of detailed reports.

    MaximEyes Software

    eye hospital management software

    MaximEyes is a comprehensive, unified electronic health record (EHR) and practices management solution designed exclusively for ophthalmology practices. It has a modern and intuitive user interface. The system will work on any computer OS. If users do not want to use cloud technologies or the clinic has a weak Internet connection, MaximEyes can be deployed through a local server

    Eye clinic management system features of MaximEyes Software

    • For each patient, the system allows ophthalmologists to set up an individual template according to different types of visits.
    • The eye hospital management software EHR includes a flexible rules engine that will suggest or automatically generate post-diagnosis codes, procedure codes, and output documents.
    • The First Insight module also offers an ophthalmic imaging management solution that works with any EHR.

    75health Software

    eye hospital management software

    One more fully-fledged eye clinic management system is 75health, which is also a cloud-based solution that provides its users with electronic health record tools. 75health system will be most suitable for managing health records and patient information for ophthalmologists working in small and mid-sized clinics.

    Eye clinic management system features of 75health Software

    • 75health eye hospital management software allows ophthalmic clinic staff to download and save patients’ medical images, such as consent forms, handouts, or scans.
    • Doctors can also create a treatment plan for their patients right in the system and scan records for allergies, medications, lab results, and symptom lists.
    • 75health solution provides smooth integration of ophthalmic management systems, which helps ophthalmologists in decision-making.

    myCare Integrity Software

    eye hospital management software

    Another cloud-based eye hospital management software that is worth your attention is myCare Integrity. It was created specifically for eye care specialists and contains a strong set of tools and modules that can cover the needs of any member of the ophthalmic clinic staff: from doctors to managers.

    Eye clinic management system features of myCare Integrity Software

    • The myCare Integrity system has an IntegriVIEW functionality that allows practitioners to link medical images directly to every screen of EMR.
    • There is also an IntegriDRAW module inside the eye clinic software, where templates are included in the application. It allows users to rely on the previously created stamps.
    • The IntegriLINK module allows ophthalmologists to link the diagnostic equipment to the system.
    • What is more, myCare Integrity eye hospital management software allows you to customize and personalize the dashboard.

    Summing up

    Eye hospital management software is extremely important for any clinic, whether there are 10 or 500 employees. It can help you improve your workflow by keeping a lot of data in one place. Imagine how easily you can get rid of unnecessary paperwork, forget about administrative costs, and speed up processing. In addition, with an ophthalmic practice management system, you can get 24/7 access to patients’ data.

    AI Ophthalmology and Optometry | Altris AI

    AI Decision Support for OCT

    Demo Account Get brochure

     

    However, the key benefit of practice management software for opticians is the improvement of diagnosis and treatment. There are already ophthalmic image management systems, like Altris AI, that can not only help to manage patients’ data but also provide a second opinion regarding medical image analysis. Using this knowledge, doctors can have better access to patients’ health problems and reports, ultimately enabling them to provide the best care to their clients.

  • Application of ML in ophthalmology

    The Application of Machine Learning in Ophthalmology: The View from the Tech Side

    AI Ophthalmology and Optometry | Altris AI Philip Marchenko
    30.11.2022
    15 min read

    According to the World Health Organization (WHO), artificial intelligence (AI) and machine learning (ML) will improve health outcomes by 2025. There are numerous digital technologies that shape the health of the future, yet AI and machine learning in ophthalmology and medical image analysis look like one of the most promising innovations.

    The healthcare industry produces millions of medical images: MRI, CT, OCT, images from the lab, etc. The right diagnosis depends on the accuracy of the analysis by the specialists. Today AI can back up any medical specialist in medical image analysis: providing confidence and much-needed second opinion.

    AI Ophthalmology and Optometry | Altris AI
    Try Altris AI for free

    Check how artificial intelligence assists in OCT interpretation

    Altris AI team decided to improve medical image analysis for just one type of medical image: Optical Coherence Tomography scans of the retina. To do it, the Altris AI team collected thousands of OCT scans and graphically labeled them, defining more than 100 pathologies and pathological signs. Watch the video to discover more features of Altris AI platform. 

    Then all this data was fed into the AI model. Further, I will tell how exactly we train the AI model of Altris AI so that it can detect more than 100 pathologies with 91% accuracy, but first, let’s discuss why it is important for the healthcare industry.

    Why are automation and machine learning in ophthalmology important?

    Due to the delicate anatomy of the eye, its treatment carries a high risk of complications. Sometimes these complications can be the result of a medical error by an eye care specialist. But how often?

    According to the Altris team research, 20.2% of eye care practitioners miss minor, early, and rare pathologies on OCT scans 1- 3 times a week, and 4.4% miss them 3-5 times a week. But the worst thing is that 30.5% of ophthalmologists and optometrists are not even sure if they are missing any pathology at all.

    Some medical errors may be minor, but some may cause significant harm to patients. Such medical errors can lead to medical malpractice lawsuits. That is why most ophthalmic clinics consider implementing AI to double-check the diagnosis of the ophthalmologist. 

    Besides, different tools of machine learning in ophthalmology have a high level of accuracy and can provide eye care specialists with a second opinion. 

    How to reach a high level of accuracy?

    It is almost always necessary to conduct many experiments to achieve a high level of model accuracy (in the case of Altris AI, it is 91%).  It is often done with the help of a machine learning pipeline.

    machine learning in ophthalmology

    High level of ML pipeline accuracy

    The machine learning pipeline is programmed by a team of engineers to perform certain steps automatically. It systematically trains and evaluates models, monitors experiments, and works with datasets.

      1. ML and Medical teams collect, annotate and preprocess data. It’s crucial to ensure the data quality is at its highest level because the model’s quality heavily depends on it. To do this, the teams developed a process and annotation guideline, which ensures that the number of errors in the annotation is minimized.
      2. ML team chooses the appropriate approach (model) depending on the collected data and the tasks. Each team member is well-versed in the most modern and high-quality approaches that solve emerging tasks.
      3. The selected model is trained on the annotated data.
      4. In the model evaluating and testing stage, we develop tests aimed at helping us understand whether the model is trained properly to perform the needed tasks.
      5. After the ML team is satisfied with the result, we deploy the model, which means the model is ready for production.
      6. While the model is running in production, we monitor its performance to ensure everything goes well.

    This workflow allows engineers to continuously fine-tune existing models alongside constant performance evaluations. The most significant advantage of this process is that it can be automated with the help of available tools. 

    AI Ophthalmology and Optometry | Altris AI
    Try Altris AI for free

    Check how artificial intelligence assists in OCT interpretation

     

    What tasks does machine learning in ophthalmology have?

    Within the Altris AI platform, we solve 2 main tasks: segmentation and classification of OCT scans. 

    Classification task

    Classification is the task of determining which category a particular object belongs to. We assign each pathology to a certain class of pathologies (for example, glaucoma class).

    Segmentation task

    The image segmentation problem can be stated as the division of an image into regions that separate different objects from each other, and from the background.

    Key metrics of Altris ML pipeline

    When discussing classification and segmentation metrics in medical imaging machine learning, it is essential to mention the Confusion matrix (CM). CM is a visualization of our performance, which helps us understand whether the model is performing well in terms of predicted and real data. For a better explanation, let’s take a look at the picture. 

    machine learning in ophthalmology

    Let’s consider 4 possible outcomes from model predictions. Say we need to create a classifier to diagnose or predict if a patient has a disease (positive / 1 or TRUE) or not (negative/ 0 or FALSE). In such a case, the model can predict “yes” or “no”, and we can have an actual “yes” or “no”. Based on this, we can get 4 categories of results:

    • TP — true positive. The patient that actually has a disease has been diagnosed with this disease. A class was predicted to be true, and it is actually true.
    • TN — true negative. The patient is actually healthy and has been diagnosed as healthy. A class was predicted to be false, and it is actually false.
    • FP — false positive (type 1 error). The patient that is actually healthy has been diagnosed as having a disease. A class was predicted to be true, but it is actually false.
    • FN — false negative (type 2 error). The patient that actually has a disease has been diagnosed as healthy. A class was predicted to be false, but it is actually true.

    With the help of the confusion matrix, our ML engineers get specific metrics needed to train our medical imaging machine learning model properly. We discuss each metric in more detail in the following paragraphs.

    Classification metrics

    • Accuracy

    To find out how many of our predictions were correct, we divide the number of correct predictions by the total.

    machine learning in ophthalmology

    While being intuitive, the accuracy metric heavily relies on data specifics. If the dataset is imbalanced (the classes in a dataset are presented unevenly), we won’t get trustful results.

    For example, if we have a training dataset with 98% samples of class A (healthy patients) and only 2% samples of class B (sick patients). The medical imaging machine learning model can easily give you 98% training accuracy by predicting that every patient is healthy, even if they have a disease. Such results may have destructive consequences as people won’t get needed medical treatment.  

    • Precision

    Precision shows what proportion out of all positive predictions was correct.

    machine learning in ophthalmology

    Precision metric helps us in cases when we need to avoid False Negatives but can’t ignore False Positives. A typical example of this is a spam detector model. As engineers, we would be satisfied if the model sent a couple of spam letters to the inbox. However, sending an important non-spam letter to the spam folder (False Positive) is much worse.

    • Sensitivity/Recall

    Recall shows how many of all really sick patients we predicted and diagnosed correctly. It is a proportion of correctly positive predictions out of all positives.

    machine learning in ophthalmology

    In our case, you want to find all sick people, so it would not be so critical if the model diagnoses some healthy people as unhealthy. They would probably be sent to take some extra tests, which is annoying but not critical. But it’s much worse if the model diagnoses sick people as healthy and leaves them without treatment. 

      The sensitivity of Altris AI is 92,51%

    • Specificity

    The specificity shows how many of all healthy patients we predicted correctly. It is the proportion of actual negatives that the medical imaging machine learning model has correctly identified as such out of all negatives.

    machine learning in ophthalmology

    Specificity should be the metric of choice if you must cover all true negatives and you can’t tolerate any false positives as a result. For example, we’re making a fraud detector model in which all people whose credit card has been flagged as fraudulent (positive) will immediately go to jail. You don’t want to put innocent people behind bars, meaning false positives here are unacceptable. 

    The specificity of Altris AI is 99,80%

    Segmentation metrics

    Segmentation also can be thought of as a classification task. For each pixel, we make predictions about whether it is a certain object or not. Therefore, we can talk about Accuracy, Precision, Recall, and Specificity in terms of segmentation. 

    Let’s say we have a Ground Truth (what is really an object) and a Segmented (what the model predicted). The intersection in the picture below is the correct operation of the medical imaging machine learning model. All that is the difference (FN and FP) is the incorrect operation of the model. True negative (TN) is everything the model did not mark in this case.

    machine learning in ophthalmology

    Quite often, even after looking at such metrics, the problem of non-symmetricity remains in the segmentation tasks. For example, if we consider a tiny object, the Accuracy metric doesn’t work. Therefore, segmentation tasks also refer to additional metrics that allow taking into account the size of the object of the overall quality assessment. Let’s look at additional metrics in more detail.

    • Intersection over Union (IoU)/Jaccard

    Intersection over Union is an evaluation metric used to measure segmentation accuracy on a particular image. This metric is considered quite simple — the intersection zone is divided by the union of Ground Truth and Segmented.

    machine learning in ophthalmology

    Sometimes we get such results, like if the object was determined to be very large, but in fact, we see that it is small. Then the metric will be low, and vice versa. If the masks are approximately equal to each other, everything works correctly, and the metric will be high.

    • Dice score/F1

    The dice coefficient is 2 times the area of overlap divided by the total number of pixels in both images.

    machine learning in ophthalmology

    This metric is a slight modification of the previous one. The difference is that, in this case, we take the intersection area twice.

    Calculating scores over dataset

    We calculate the metrics described above for each scan. In order to count them over the entire dataset, we take each picture in this dataset, segment it, calculate the metric, and then take the average value of the metrics on each image.

    What is model validation in ML?

    In addition to evaluating the metrics, we also need to design the model validation procedure suitable for a specific task.

    When we have determined the metric that suits the task of machine learning for medical image analysis, we also need to understand what data to use for calculation. It will be wrong to calculate the metric on the training data because the model has already seen it. This means that we will not check the ability of the model to generalize in any way. Thus, we need a specific test dataset so that we can carry out quality control according to the selected metrics.

    The main tasks of the model validation are:

    • To provide an unbiased estimation of the accuracy that the model can achieve
    • To check whether the model is not overfitted

    Picking the correct model validation process is critical to guarantee the exactness of the validation method. In addition, there is no single suitable validation method for machine learning in ophthalmology — each task requires different validation. Engineers separately examine each task to see if data has leaked from the train dataset to the test dataset because this may lead to an overly optimistic estimate of the metrics.

    For example, we can take OCT images in different resolutions. We may need a higher image resolution for some diseases. If the medical imaging machine learning model overfits at the resolution of this OCT, it will be called a leak because the model should behave the same at any resolution.

    Overfitting and underfitting

    The model also has such an important property as a generalization. If the model did not see some data during training, it should not be difficult for the model to determine which class a certain image belongs to.

    At this stage, engineers may have two problems that they need to solve. The first problem is overfitting. When the model remembers the training data too well, we lose the ability to make correct predictions. The picture below illustrates this problem. The chart in the middle is a good fit when the model is general enough and has a positive trend, and the trend is well-learned. But the chart on the right shows a too-specific model that will not be able to guess the trend.

    machine learning in ophthalmology

    Another problem to solve is underfitting. This problem arises when we have chosen a model that is not complex enough to describe the trend in the data (left chart).

    Bias variance trade-off

    Another important concept we use in machine learning model validation is the bias variance trade-off. We want our models to always make accurate predictions and have no ground truth scattered. As shown at first/second circle.

    However, there are situations when we have a model that predicts something close to the target, but from dataset to dataset, it has a strong scatter. This is showcased in the second circle. 

    In circle three, you can observe a situation where the model has heap predictions on different datasets, but they are inaccurate. This situation usually indicates that we need to almost entirely rebuild the model.

    machine learning in ophthalmology

    Overfitting and bias variance trade-off are very important in working with the model, as they allow us to track errors and select a model that will balance between spread and hitting the target.

    Unbiased estimation

    In addition, within each model, we evaluate a set of parameters. We made a certain estimate (graph on the left), but in real life, the distribution of parameters differs (graph on the right). Thus, seeing that our estimate turned out to be shifted, we find another problem that needs to be solved. Machine learning in ophthalmology needs to make the estimate as unbiased as possible.

    machine learning in ophthalmology

    How do we validate the Altris AI model?

    There are three main steps in choosing a validation strategy for machine learning in ophthalmology:

    • we got familiar with ophthalmology, understood the nature of data, and where the leakages are possible;
    • We estimated the dataset size and target distribution;
    • understood the model’s training complexity (amount of operations/ number of parameters/ time) to pick the validation algorithms.

    After that, we have a reliable strategy for the machine learning model validation. Here are some fundamental concepts we use in the validation of models’ performance.

    Train/test split

    Train/test split is the most simple and basic strategy that we use to evaluate the model quality. This strategy splits the data into train and test and is used on small datasets. For example, we have a dataset of 1000 pictures, 700 of which we leave for training and 300 we take for the test.

    This method is good enough for prototyping. However, we don’t have enough datasets with it to do a simple double-check. This phenomenon is called high sampling bias: this happens when we encounter some kind of systematic error that did not fit into the distribution in the train or test.

    By dividing data into train and test, we are trying to simulate how the model works in the real world. But if we randomly split the data into train and test, our test sample will be far from the real one. This can be corrected by constructing several test samples from the number of data we have and examining the model performance. 

    Train/test/holdout set

    We leave the holdout as the final validation and use the train and test to work with the medical imaging machine learning model. After optimizing our model on the train/test split, we can check if we didn’t overfit it by validating our holdout set.

    machine learning in ophthalmology

    Using a holdout as a final sample helps us look at multiple test data distributions and see how much the models will differ.

    K-fold cross validation

    There is also a more general approach that Altris AI team use for validation — k-fold cross validation. This method divides all of our data equally into train and test.

    machine learning in ophthalmology

    We take the first part of the data and declare it as a test, then the second, and so on. Thus, we can train the model on each such division and see how it performs. We look at the variance and standard deviation of the resulting folds as it will give information about the stability of the model across different data inputs.

    Do we need ML models to perform on par with doctors?

    Here I will try to answer a question that worries many ophthalmologists and optometrists: can machine learning for medical image analysis surpasses an eye care specialist in assessing quality?

    In the diagram below, I have drawn an asymptote called the Best possible accuracy that can be achieved in solving a particular problem. We also have a Human level performance (HLP), which represents how a person can solve this problem. 

    HLP is the benchmark that the ML model strives for. Unlike the Best possible accuracy, for which there is no formula, HLP can be easily calculated. Therefore, we assume that if a model crosses the human quality level, we have already achieved the best possible quality for that model. Accordingly, we can try to approximate the Best possible accuracy with the HLP metric. And depending on this, we understand whether our model performs better or worse.

    machine learning in ophthalmology

    For those tasks that people do better and the ML model does worse, we do the following:

    • collect more data
    • run manual error analysis
    • do better bias/variance analysis

    But when the model crosses the HLP quality level, it is not entirely clear what to do next with the model and how to evaluate it further. So, in reality, we don’t need the model to outperform a human in interpreting images. We simply won’t know how to judge the quality of this model and whether it can be 100% objective and unbiased.

    Avoidable bias

    Let’s say we need to build a classifier for diabetic retinopathy based on OCT scans, and we have a control dataset prepared by people. In the first case, doctors are wrong 5% of the time. At the same time, the model on the train set is wrong in 10% of cases and on the test set — in 13%.

    machine learning in ophthalmology

    The difference between the model’s and the human’s performance is usually taken as the minimum difference between the train/test set and the human. In our case, it is 5% gap (10% – 5%) of avoidable bias. It is called avoidable bias because it can be fixed theoretically. In such a case, we need to take a more complex model and more data to better train the model.

    In the second case, doctors determine the disease with a 9% error. If the model defines a disease with the same rates as the previous example, then the difference between the train/test set and the human will be 1% (10% – 9%), which is much better than avoidable bias

    Looking at these two cases, we must choose a strategy that will lower the variance for the machine learning model so that it works stably on different test sets. Thus, taking into account the avoidable bias and the variance between the samples, we can build a strategy for training the model so that it could potentially outperform the HLP someday. However, do we need it now?

    Understanding HLP

    To better understand the HLP metric, let’s consider the task of determining dry AMD on OCT scans. We have a fixed dataset and 4 train sets, each one determining dry AMD with a specific accuracy:

    • ML engineers – 20%
    • ophthalmologists – 5%
    • 2 ophthalmologists – 3%
    • 2 ophthalmologists and 1 professor of ophthalmology – 2%

    machine learning in ophthalmology

    We take a result of 2% as the best HLP possible. To develop our model, we can choose the performances we strive to get. The 20% error result is irrelevant, so we discard this option. But the level of 1 doctor is enough for model version number 1 model. Thus, we are building a development strategy for model 1.

    Summing up

    Machine learning will revolutionize the eye care industry. It provides confidence and second opinion to eye care specialists in medical image analysis. 

    If you are looking for ways to use machine learning in your eye care practice, feel free to contact us. At Altris AI, we improve the diagnostic process for eye care practitioners by automating the detection of 54 pathological signs and 49 pathologies on OCT images.